

ТН ВЭД 8531 10 300 0

Соответствует ТР ТС о взрывобезопасности

OKΠ 43 7191

Соответствует ТР о пожарной безопасности

МОДУЛЬ РЕЛЕЙНЫЙ АДРЕСНЫЙ **ИСКРОБЕЗОПАСНЫЙ**

«PM -1K Ex»

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

СПР.425413.011-02 РЭ

1 ОПИСАНИЕ И РАБОТА ИЗЛЕЛИЯ

1.1 Назначение и характеристики

1.1.1 Релейный модуль искробезопасный адресный «РМ-1К Ех» (далее модуль) предназначен для обеспечения искробезопасности пусковой цепи, непрерывного контроля ее исправности, управления выдачей напряжения в нагрузку, а также обмена информацией по двухпроводной интерфейсной адресной линии связи (далее АЛС) с управляющим прибором.

Модуль «РМ-1К Ex» включается в систему ОПС компании «Рубеж» и подключается к адресным приборам приемно-контрольным и управления.

- 1.1.2 В качестве нагрузки в пусковой цепи могут быть устройства, питающиеся по искробезопасной цепи и удовлетворяющие параметрам максимально-допустимой суммарной внешней емкости и индуктивности, такие как: искробезопасные оповещатели, искробезопасные модули пожаротушения, искробезопасные 4-х проводные извещатели и иные искробезопасные нагрузки.
- 1.1.3 Модуль «РМ-1К Ex» относится к связанному оборудованию (по ГОСТ 30852.10), соответствует требованиям ГОСТ 30852.0, ГОСТ 30852.10 и предназначен для установки вне взрывоопасных зон помещений и наружных установок.

Модуль имеет выходные искробезопасные электрические цепи уровня «ia», и выпускается в дух вариантах исполнения, отличающиеся маркировкой взрывозащиты по подгруппе взрывоопасных смесей и соответственно выходными параметрами искрозащиты, согласно таблице 1.1.1.

		_			•	4 .	•
П	าล	hπ	ITAT	Ta			

1 аолица 1.1.1.				
Маркировка и выходные параметры	Варианты исполнения			
таркировка и выходные параметры	РМ-1К Ех-ПВ	PM-1K Ex-IIC		
Маркировка взрывозащиты	[Exia]IIB	[Exia]IIC		
- максимальное выходное напряжение Uo, B - максимальный выходной ток Io, A	19,5 0,4	19,5 0,26		
- максимальная суммарная внешняя емкость Со, мкФ	1,4	0,22		
- максимальная суммарная внешняя индуктивность Lo, мГн	0,8	0,4		

- 1.1.4 Электропитание модуля осуществляется постоянным напряжением с номинальным значением 12В или 24В от двух независимых резервированных источников электропитания, либо от прибора, имеющего выход напряжения питания.
 - $1.1.5\;$ Параметры электропитания модуля указаны в таблице $1.1.2\;$

Таблица 1.1.2

Таолица 1.1.2.		
	PM-1K Ex-IIB	РМ-1К Ех-ПС
Рабочий диапазон питающих напряжений, В	10 36	
Потребляемая мощность (во всем диапазоне), Вт, не более		
в режиме контроля	0	,8
в режиме пуска	11	7,7
Ток потребления в диапазоне напряжений питания 1014 В,		
в режиме контроля, мА, не более	80	
в режиме пуска, А, не более.	1,1	0,77
Ток потребления в диапазоне напряжений питания 2028 В,		
в режиме контроля, мА, не более	4	10
в режиме пуска, А, не более.	0,55	0,38

1.1.6 Модуль осуществляет информационный обмен по двухпроводной АЛС.

АЛС гальванически развязана от источников питания модуля.

Ток, потребляемый модулем от АЛС - не более 0,3 мА.

1.1.7 Модуль может находиться в двух режимах - режиме контроля и режиме пуска.

Перевод модуля из режима контроля в режим пуска (и обратно) осуществляется по команде, полученной по АЛС от управляющего контроллера.

- 1.1.8 В режиме контроля модуль обеспечивает:
- контроль пусковой цепи на обрыв и замыкание малым током обратной полярности;
- световую индикацию неисправности пусковой цепи желтым светодиодом «НЕИСПР.».
- 1.1.9 В режиме пуска модуль обеспечивает:
- выдачу в нагрузку пусковой цепи прямого напряжения;
- световую индикацию пуска красным светодиодом «ВЫХ. ВКЛ.».
- 1.1.10 Рабочие выходные характеристики пусковой цепи приведены в таблице 1.1.3. Таблица 1.1.3.

	РМ-1К Ех-ПВ	PM-1K Ex-IIC
режиме контроля (обратная полярность): напряжение контроля, В, не более ток контроля , мА, не более 8		4 3
В режиме пуска: напряжение холостого хода (при обрыве), В максимальный выходной ток (ток короткого замыкания), А, выходное сопротивление (до ограничения тока), Ом	18 0,4 12	18 0,26 14

1.1.11 Модуль обеспечивает контроль и световую сигнализацию (в соответствии с таблицей 1.1.4) исправности питающего напряжения на каждом входе питания, а также передачу информации о состоянии питания по АЛС.

Таблица 1.1.4.

Индикатор	Режим свечения	Состояние входа питания
ПИТ. 1 (зеленый)	ГОРИТ непрерывно	НОРМА на входе XT3 «ПИТ.1»
ПИТ. Т (Зеленыи)	МИГАЕТ - 1Гц	Питание на XT3 «ПИТ.1» не в норме
ПИТ. 2 (зеленый)	ГОРИТ непрерывно	НОРМА на входе ХТЗ «ПИТ.2»
1111.2 (ЗСЛСНЫИ)	МИГАЕТ - 1Гц	Питание на XT3 «ПИТ.2» не в норме

1.1.12 Модуль отображает режим обмена данными по АЛС при помощи светового индикатора «**СВЯЗь**» (расположен возле клемм XT2 «АЛС» - см. поз.5 ПРИЛОЖЕНИЕ А) согласно таблице 1.2.5.

Таблица 1.1.5.

Индикатор	Режим свечения	Режим обмена по АЛС
	вспышка 1 раз в 5 сек	Наличие обмена данными по АЛС
СВЯЗЬ	МИГАЕТ – 1Гц	Выдача напряжения в пусковую цепь
(красный)	выключен	Отсутствие обмена данными по АЛС
	ГОРИТ непрерывно	Не проходит «ТЕСТ» связи (см. п.1.1.13)

- 1.1.13 Модуль имеет кнопку «ТЕСТ» (расположена в зазоре возле верхней боковой поверхности корпуса см. поз.4 ПРИЛОЖЕНИЕ А), служащую датчиком закрытия крышки корпуса, и используемую также при инсталляции для адресации и контроля модуля (подробно см. руководство на систему ОПС «Рубеж»).
- 1.1.14 Модуль предназначен для эксплуатации при температуре окружающего воздуха от минус 40°C до плюс 55°C и относительной влажности до 93% при температуре +40°C.
 - 1.1.15 Степень защиты оболочки корпуса от внешних воздействий IP20 по ГОСТ14254.
- 1.1.16 Модуль не выдает ложных извещений при воздействии электромагнитных помех третьей степени жесткости по приложению Б ГОСТ Р 53325.
 - 1.1.17 Средняя наработка на отказ модуля не менее 40000 ч.
 - 1.1.18 Средний срок службы модуля до списания не менее 10 лет.
 - 1.1.19 Габаритные размеры ($\text{ШхВх}\Gamma$) не более 220х125х55мм.
 - 1.1.20 Масса не более 0,5 кг.

1.2 Комплектность

Комплект поставки соответствует таблице 1.2.1.

Таблина 1.2.1

Наименование	Условное обозначение	Коли- чество	Приме- чание
1. Релейный модуль искробезопасный адресный «PM-1K Ex»	СПР.425413.011 ТУ	1	
	СПР.425413.011-02 РЭ	1	

1.3 Устройство изделия

Модуль имеет пластмассовый герметичный корпус, состоящий из основания и прозрачной крышки (см. ПРИЛОЖЕНИЕ A- поз. 1, 2). На основании имеется четыре отверстия для крепления модуля к стене.

К основанию крепятся печатная плата (поз.7) с расположенными на ней радиоэлементами и колодками для внешних соединений (поз.6, 8, 11). Снаружи печатная плата закрыта защитным металлическим экраном и опломбирована заводской пломбой.

Ввод кабелей в корпус модуля осуществляется через гермовводы (поз.10).

1.4 Обеспечение искробезопасности

- 1.4.1 Модуль «РМ-1К Ex» СПР.425413.011 ТУ относится к связанному электрооборудованию, имеет вид взрывозащиты «Искробезопасная электрическая цепь i » и соответствует требованиям ГОСТ 30852.0, ГОСТ 30852.10. Маркировка взрывозащиты [Exia]IIB или [Exia]IIC.
- 1.4.2 В соответствии с требованиями ГОСТ 30852.0, ГОСТ 30852.10 в конструкции модуля предусмотрены следующие меры и средства взрывозащиты:
- использование барьера искрозащиты на основе предохранителя и ограничителей напряжения, а также утроенного активного ограничителя тока, при соответствующем выборе номиналов и мощности элементов модуля, для обеспечения ограничения напряжения и тока в искробезопасной цепи пуска;
- гальваническое разделение искробезопасной и связанных с ней цепей от внешних цепей питания и управления;
- конструктивное исполнение разделительного трансформатора, исключающее попадание силового напряжения на искробезопасную и связанные с ней цепи;
- соответствующий выбор значений электрических зазоров и путей утечки между искробезопасной и связанных с ней цепями и искроопасными цепями;
 - обеспечение неповреждаемости элементов искрозащиты заливкой эпоксидным компаундом.
- 1.4.3 Искробезопасность обеспечивается при соблюдении ограничений на максимально допустимые суммарные емкость и индуктивность в пусковой цепи, указанные в таблице 1.1.1.

1.5 Маркировка и пломбирование

- 1.5.1 Маркировка модуля соответствует требованиям комплекта конструкторской документации СПР.425413.011 и ГОСТ 26828.
 - 1.5.2 На лицевой стороне нанесены:
 - наименование модуля;
 - товарные знаки предприятия-изготовителя и предприятия-поставщика;
 - знаки соответствия (знаки обращения на рынке) и специальный знак «Ех»;
 - надписи возле индикаторов, указывающие их назначение;
 - на табличке возле колодки для подключения пусковой цепи надпись
- «ИСКРОБЕЗОПАСНАЯ ЦЕПЬ» и значения параметров искробезопасности:
- «Um:250B Io:0,4A Uo:19,5B Lo:0,8мГн Co:1,4мкФ -40°C <ta< +55°C» для РМ-1К Ex-IIB;
- «Um:250B Io:0,26A Uo:19,5B Lo:0,4мГн Co:0,22мкФ -40°C <ta< +55°C» для PM-1К Ex-IIC.

- 1.5.3 На наружной боковой поверхности модуля имеется табличка (поз.3 ПРИЛОЖЕНИЕ А), на которой нанесены:
 - товарные знаки предприятия-изготовителя и предприятия-поставщика;
 - наименование изделия;
 - знаки соответствия (знаки обращения на рынке) и специальный знак «Ех»;
 - маркировка взрывозащиты, максимальное входное напряжение «Um:250B»;
 - температура окружающей среды «-40°C <ta< +55°C», степень защиты оболочки «IP65»;
 - наименование органа по сертификации и номер действующего сертификата по взрывозащите;
 - заводской номер и дата выпуска (квартал и две последние цифры года);
 - версия программного обеспечения.
- 1.5.4 Корпус модуля пломбируется монтажной организацией, производящей монтаж и техническое обслуживание.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Обеспечение искробезопасности при монтаже и эксплуатации

2.1.1~ При монтаже и эксплуатации модуля должны выполняться требования, установленные в следующих нормативно-технических документах: ГОСТ 30852.13 -2002; ПУЭ изд.6 (гл.7.3); ПТЭЭП: ПОТ Р М-016-2001 (РД 153-34.0-03.150-00).

ВНИМАНИЕ! Категорически запрещается устанавливать модуль во взрывоопасных помешениях и зонах.

- 2.1.2 Перед монтажом модуль должен быть осмотрен на отсутствие повреждений корпуса, контактов клеммных колодок, на наличие маркировки взрывозащиты и условных знаков искробезопасности.
 - 2.1.3 Монтаж производить при выключенном питании модуля и подключаемых устройств.
- 2.1.4 Схема модуля должна быть надежно заземлена при эксплуатации. Заземление должно производиться одножильным или многожильным медным проводом общим сечением 0,5...2,5мм², который подключается к клемме заземления на плате модуля (поз.9 ПРИЛОЖЕНИЯ A).
- 2.1.5 Суммарные емкость и индуктивность пусковой цепи (с учетом включенного в цепь оборудования) не должны превышать величин, указанных в таблице 1.1.1.
- 2.1.6 Кабели и провода как искробезопасной, так и искроопасных цепей, подключаемые к клеммным колодкам (поз.6, 8, 11 ПРИЛОЖЕНИЯ А) должны быть уплотнены (затянуты) гермовводами (поз.10 ПРИЛОЖЕНИЯ А) до их полного обжатия для обеспечения герметичности и во избежание их случайного выдергивания.

ВНИМАНИЕ! Категорически запрещается подключение к искробезопасной цепи пуска посторонних цепей при эксплуатации.

2.1.7 Приемка изделия после монтажа и его эксплуатация должны производиться в соответствии с требованиями ПТЭЭП и настоящего РЭ.

2.2 Порядок установки

2.2.1 Установку модуля производить с учетом удобства эксплуатации и обслуживания, на вертикальной поверхности из негорючих материалов.

Желательно исключить прямое попадание солнечных лучей на переднюю панель модуля изза возможного ухудшения видимости органов индикации.

- 2.2.2 Снять с модуля крышку и, соблюдая осторожность, закрепить на стене основание корпуса, с установленной на нем платой. Разметка для крепления приведена в ПРИЛОЖЕНИИ А.
- 2.2.3 Подключить к модулю внешнее заземление, питающие цепи, цепи АЛС в соответствии с ПРИЛОЖЕНИЕМ Б, с учетом требований п. 2.1.

Примечание: клеммные колодки модуля позволяют подключать к каждому контакту провод общим сечением 0,2...2,5 мм².

2.2.4 Подключить к модулю пусковую цепь с нагрузкой, смонтированную согласно схемам, приведенным в ПРИЛОЖЕНИИ Б, соблюдая условия и ограничения, указанные в пункте 2.1.

Для монтажа пусковой цепи следует применять специальные коммутационные коробки для искробезопасных цепей (типа «КСРВ-і» СПР.687227.001 ТУ).

Примечание: При использовании модуля для управления модулями пожаротушения рекомендуется перед подключением пусковой цепи с реальной нагрузкой проверить работу модуля с имитатором нагрузки в виде амперметра (на ток не менее 1A).

- 2.2.5 По окончании монтажа системы пожарной сигнализации следует:
- запрограммировать конфигурацию модуля на управляющем приборе;
- при помощи кнопки «ТЕСТ» убедиться в работе модуля по приему тестового сигнала управляющим прибором.
- 2.2.6 После завершения монтажа закрыть модуль крышкой и опломбировать один из крепежных винтов.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 Техническое обслуживание модуля проводит специально обученный персонал, руководствуясь нормативно-техническими документами, указанными в п. 2.1.1, в соответствии с требованиями ГОСТ 30852.16.
 - 3.2 Техническое обслуживание модуля предусматривает:
 - плановое обслуживание с периодичностью, установленной на объекте;
- внеплановое обслуживание при возникновении неисправностей, указанных в разделе 4 настоящего РЭ.
 - 3.3 Работы по периодическому техническому обслуживанию включают:
 - 1) проверку внешнего состояния модуля, очистка от пыли;
- 2) проверку надежности крепления модуля, состояния внутреннего монтажа модуля, надежности контактных соединений, в особенности заземляющего проводника;
 - 3) проверку работоспособности модуля в составе системы пожарной сигнализации.

4 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Перечень возможных неисправностей, которые допускается устранять силами потребителя, и способы их устранения приведены в таблице 4.1. Устранение неисправностей производить согласно ГОСТ 30852.18 и гл. ЭЗ-2 ПТЭЭП.

<u>ВНИМАНИЕ!</u> В целях сохранения взрывозащищенности ремонт модульа должен производиться только на заводе-изготовителе.

Таблипа 4.1

Неисправность, внешнее проявление	Вероятная причина	Способы устранения
1.Модуль не включается	Неисправность в цепи подачи	Проверить цепь питания от БРП,
- все светодиоды пога-	питания к модулю.	устранить неисправность.
шены.	Неисправен блок резервного	Проверить выходное напряжение
	питания (БРП).	БРП, заменить БРП.
2.Модуль не становится в	Неисправность в цепи пуска.	Проверить целостность цепи, уст-
дежурный режим		ранить неисправность.
	Неисправное устройство в цепи	Проверить и заменить неисправное
	пуска.	устройство.
3. Индикатор «СВЯЗЬ»	Нет питания модуля или нет свя-	Восстановить питание, восстано-
не мигает	зи с контроллером	вить связь.
4. В режиме «ТЕСТ» про-	Модуль отсутствует в конфигу-	Произвести конфигурирование
должительное непрерыв-	рации контроллера	контроллера
ное свечение индикатора		
«СВЯЗЬ»		

5 ХРАНЕНИЕ

- 5.1 Хранение модуля в упаковке должно соответствовать условиям хранения 1 по ГОСТ 15150.
- 5.2 Воздух в помещении для хранения модуля не должен содержать паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.
 - 5.3 Срок хранения модуля в упаковке без переконсервации не более 12 месяцев.

6 ТРАНСПОРТИРОВАНИЕ

- 6.1 Условия транспортирования модулей должны соответствовать условиям хранения 5 по ГОСТ 15150.
- 6.2 Модули в транспортной упаковке предприятия-изготовителя могут транспортироваться всеми видами транспорта в крытых транспортных средствах в соответствии с требованиями действующих нормативных документов.

7 СВЕДЕНИЯ ОБ УТИЛИЗАЦИИ

Модуль и его составные части не содержат компонентов и веществ, требующих особых условий утилизации. Утилизация осуществляется в порядке, предусмотренном эксплуатирующей организацией.

8 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 8.1 Предприятие-изготовитель гарантирует соответствие модуля требованиям технических условий СПР.425513.010 ТУ при соблюдении условий транспортирования, хранения, монтажа и эксплуатации.
- 8.2 Гарантийный срок эксплуатации 24 месяца с момента ввода в эксплуатацию, но не более 36 месяцев с момента изготовления.

Изготовитель: ООО «**СПЕЦПРИБОР**», 420029, г.Казань, а/я 89, ул. Сибирский тракт, 34 тел.: (843)512-57-42 факс: (843) 512-57-49 E-mail: info@specpribor.ru http://www.specpribor.ru

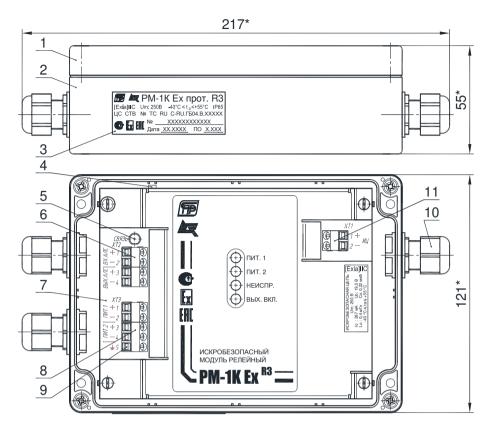
Поставщик: ООО «ТД «Рубеж»», 410056, г. Саратов, ул. Ульяновская, 28

но требованиям конструкторской документации.

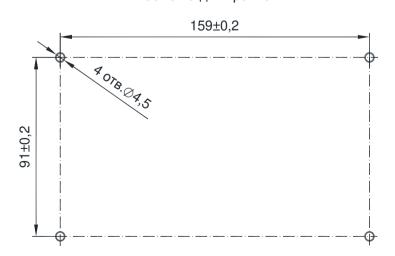
Дата упаковывания

Упаковывание произвел

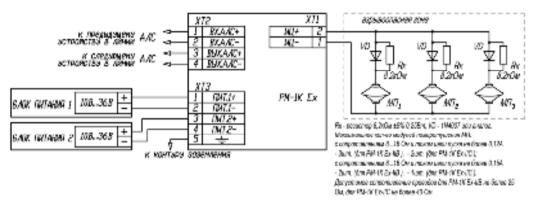
9 СВЕДЕНИЯ ОБ ИЗГОТОВИТЕЛЕ И ПОСТАВЩИКЕ


тел.: (8452) 222-888, 222-012, 228-76	61 E-mail: td_rubezh@rubezh.ru http://td.rubezh.ru/
10 (СВИДЕТЕЛЬСТВО О ПРИЕМКЕ
Релейный модуль искробезопасный	адресный «РМ-1К Ex-II» зав. номер
соответствует техническим услови	ям СПР.425413.011 ТУ и признан годным к эксплуатации.
М.П.	Дата выпуска
	Начальник ГТК
,	ЦЕТЕЛЬСТВО ОБ УПАКОВЫВАНИИ
Релеиныи модуль искробезопасный	адресный «РМ-1К Ex» заводской номер п.10 упакован соглас-

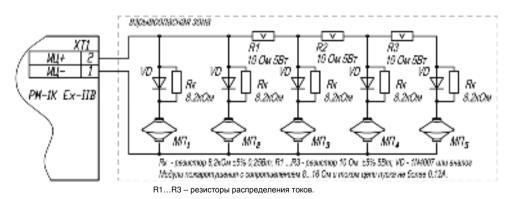
12 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ


- 12.1 Рекламации предъявляются предприятию-изготовителю или организации-поставщику (см. п. 9) в течение гарантийного срока в установленном порядке с обязательным приложением настоящего документа и акта о вводе модуля в эксплуатацию.
- 12.2 При отказе или неисправности модуля, в течение гарантийного срока должен быть составлен акт о необходимости ремонта и отправки неисправного модуля на предприятие-изготовитель.
- 12.3 Все предъявленные рекламации регистрируются в соответствии с таблицей 12.1. Таблина 12.1

Дата и номер акта рекламации	Краткое содержание рекламации	Меры, принятые по рекламации	Должность, фамилия и подпись отв. лица	Примечание

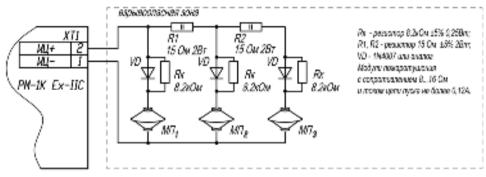

приложение а

Разметка для крепления



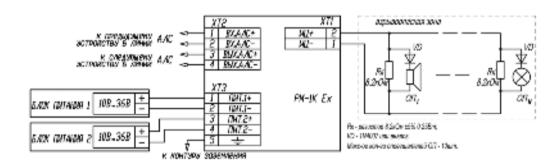
приложение Б

Примечание: МОДУЛЬ осуществляет контроль пусковой цепи по **суммарному** обратному току, задаваемому контрольными резисторами Rк, поэтому обрыв любого одного МП в цепи приводит к уменьшению суммарного обратного тока и воспринимается как неисправность.


Рис.Б.1. Схема подключения к PM-1K Ex искробезопасных модулей пожаротушения без резисторов распределения токов

Примечание: Рекомендуется МП с меньшим сопротивлением цепи располагать ближе (по схеме) к PM-1K EX, а МП с большим сопротивлением – дальше.

Рис.Б.2. Схема подключения к РМ-1К EX варианта IIB искробезопасных модулей пожаротушения с резисторами распределения токов


ПРИЛОЖЕНИЕ Б (продолжение)

R1, R2 – резисторы распределения токов.

Примечание: Рекомендуется МП с меньшим сопротивлением цепи располагать ближе (по схеме) к PM-1K EX, а МП с большим сопротивлением – дальше.

Рис.Б.3. Схема подключения к РМ-1К EX варианта IIC искробезопасных модулей пожаротушения с резисторами распределения токов

Примечание: допустимое суммарное сопротивление проводов пусковой цепи рассчитывается по формуле:

$$Rnpoвod = \frac{17 - Uнагр - (Rвых*Інагр)}{Iнагр}$$
 , где:

R вых — выходное сопротивление модульа: Rвых=12 Ом для PM-1K EX-IIB и Rвых=14 Ом для PM-1K EX-IIC;

U нагр – минимально-допустимое напряжение на нагрузке пусковой цепи;

І нагр — суммарный ток нагрузки пусковой цепи.

Рис.Б.4. Схема подключения к РМ-1К ЕХ искробезопасных устройств оповещения