ИСО «Орион»

Контроллер доступа «С2000-2»

Инструкция по монтажу АЦДР.425723.001 ИМ

Настоящая инструкция по монтажу содержит указания, позволяющие выполнить основные действия по установке и подготовке контроллеров «С2000-2» к работе. Описание контроллера и правила его настройки и эксплуатации смотрите в Руководстве по эксплуатации (находится на сайте компании <u>http://bolid.ru</u> в разделе «ПРОДУКЦИЯ» на странице контроллера «С2000-2»).

1 МЕРЫ ПРЕДОСТОРОЖНОСТИ

- Контроллер не имеет цепей, находящихся под опасным напряжением.
- Конструкция контроллера удовлетворяет требованиям электро- и пожарной безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.1.004-91.
- Конструкция контроллера обеспечивает его пожарную безопасность в аварийном режиме работы и при нарушении правил эксплуатации согласно ГОСТ 12.1.004-91.
- Монтаж, установку и техническое обслуживание производить при отключённом напряжении питания контроллера.
- Монтаж и техническое обслуживание контроллера должны производиться лицами, имеющими квалификационную группу по электробезопасности не ниже второй.

2 МОНТАЖ КОНТРОЛЛЕРА

Контроллер устанавливается на стенах или других конструкциях помещения в местах, защищённых от воздействия атмосферных осадков, механических повреждений и от доступа посторонних лиц.

Рисунок 1. Габаритные и установочные размеры контроллера

Монтаж контроллера производится в соответствии с РД 78.145-92 «Правила производства и приёмки работ. Установки охранной, пожарной и охранно-пожарной сигнализации». Установка контроллера должна производиться на высоте, удобной для эксплуатации и обслуживания.

3 ПОРЯДОК КРЕПЛЕНИЯ КОНТРОЛЛЕРА

3.1 Полностью прочтите настоящую Инструкцию по монтажу прежде, чем воспользоваться шаблоном для монтажа.

3.2 Крепление на стену

3.2.1 Убедитесь, что стена, на которую устанавливается контроллер, прочная, ровная, чистая и сухая.

3.2.2 Закрепите контроллер на стене по варианту 1 или варианту 2.

3.2.3 Вариант 1. Приложите к стене шаблон для монтажа (стр. 15). Просверлите 3 отверстия (А, В и на выбор С или D).

3.2.4 Установите в отверстия дюбеля и вкрутите в 2 верхних дюбеля шурупы из комплекта поставки так, чтобы расстояние между головкой шурупа и стеной составляло около 7 мм.

3.2.5 Снимите крышку контроллера в порядке, указанном на рис. 2.

3.2.6 Навесьте контроллер на 2 шурупа. Вкрутите шуруп в нижнее крепёжное отверстие и зафиксируйте контроллер на стене.

3.2.7 Вариант 2. Приложите к стене шаблон для монтажа (стр. 15). Просверлите 3 отверстия (Е, F и на выбор С или D).

3.2.8 Установите в отверстия дюбеля.

3.2.9 Снимите крышку контроллера в порядке, указанном на рис. 2.

3.2.10 Приложите контроллер к стене так, чтобы крепежные отверстия совпали с дюбелями.

3.2.11 Вкрутите шурупы в крепежные отверстия и зафиксируйте контроллер на стене.

3.3 Крепление на DIN-рейку

3.3.1 Установите контроллер на DINрейку в порядке, указанном на рис. 3.

3.3.2 Снимите крышку контроллера в порядке, указанном на рис. 2.

Рисунок 2. Снятие крышки контроллера

4 ПОДКЛЮЧЕНИЕ КОНТРОЛЛЕРА

4.1 Подключение линий интерфейса RS-485

4.1.1 Подключите линии A и B интерфейса RS-485 к контактам «A» и «B» клеммной колодки соответственно. Максимальное сечение проводов 1,5 мм².

4.1.2 Если контроллер, пульт или другие приборы ИСО «Орион», подключённые к интерфейсу RS-485, питаются от разных источников, объедините цепи «GND» контроллера и «0 В» приборов (см. рис. 4).

4.1.3 Если контроллер не является первым или последним в линии интерфейса RS-485, удалите перемычку, расположенную на плате контроллера (см. рис. 4).

4.2 Шлейфы сигнализации (ШС)

4.2.1 Подключите к контактам «Z1» («Z2») и «GND» нормально замкнутые и нормально разомкнутые охранные извещатели или цепи разрешения считывания и открытия доступа контроллера, соблюдая полярность (см. рис. 5). В ШС контроллера можно подключить охранные извещатели с выходом типа «сухой контакт».

4.3 Вход/Выход «BUSY»

4.3.1 Для синхронизации нескольких контроллеров соедините их контакты «BUSY» между собой. Если контроллеры питаются от разных источников питания, объедините их контакты «GND». Максимальное количество объединяемых контроллеров – 10.

4.3.2 При необходимости подключите датчик присутствия с нормально разомкнутыми контактами к клеммам «BUSY» и «GND» контроллера (см. рис. 6). Количество параллельно подключаемых датчиков присутствия не ограничено.

Рисунок 6. Схема объединение контроллеров по входу/выходу «BUSY» и подключения датчиков присутствия

4.4 Подключение кнопок «ВЫХОД», «РАЗРЕШЕНИЕ» («ПОДТВЕРЖДЕНИЕ») и «ЗАПРЕТ»

4.4.1 Подключите кнопки «ВЫХОД» и, при необходимости, кнопки «РАЗРЕШЕНИЕ» («ПОДТВЕРЖДЕНИЕ») и «ЗАПРЕТ», к контактам «EXIT1» и «EXIT2» контроллера в соответствии с рис. 7.

Рисунок 7. Схема подключения кнопок «ВЫХОД», «РАЗРЕШЕНИЕ» («ПОДТВЕРЖДЕНИЕ») и «ЗАПРЕТ»

4.5 Подключение датчиков прохода (открывания двери)

4.5.1 К контроллеру можно подключить извещатели с нормально замкнутым и нормально разомкнутым контактным выходом или с выходом типа «открытый коллектор». Схемы подключения датчиков прохода (датчиков открывания двери) к контроллеру приведены на рис. 8.

Вариант 1

Нормально замкнутый с контактным выходом (геркон)

Вариант 4 Нормально выключенный выход типа «Открытый коллектор»

Рисунок 8. Схемы подключения датчиков прохода (открывания двери)

4.6 Подключение считывателей

4.6.1 К контроллеру можно подключить 2 считывателя ключей Touch Memory (iButton), 2 считывателя карт Proximity с выходным интерфейсом Touch Memory, Wiegand или ABA-TrackII или 2 клавиатуры для считывания PIN-кодов.

4.6.2 Схемы подключения считывателей приведены на рис. 9 – 15.

4.6.3 Цифра 1 или 2 в обозначении контакта указывает, к какому считывателю относится этот контакт.

4.6.4 Назначение контактов для подключения считывателя приведено в табл. 1.

«С2000-2» АЦДР.425723.001 ИМ Изм.5 АЦДР.5172-19 от 05.02.2019

http://bolid.ru

4.6.5 Если ток потребления считывателя не более 100 мА, а расстояние между контроллером и считывателем не более 50 м, напряжение питания на считыватель можно подавать с клемм контроллера.

4.6.6 Если ток потребления считывателя более 100 мА или расстояние между контроллером и считывателем более 50 м, напряжение питания на считыватель подавайте от отдельного источника питания. Цепь «GND» считывателя объедините с цепью «GND» контроллера.

4.6.7 Расстояние от контроллера до считывателя должно быть не более 100 м.

4.6.8 Подключение считывателей с интерфейсом ABA Track-II аналогично подключению считывателей с интерфейсом Wiegand с учетом того, что к входу «D0» контроллера подключается выход считывателя «DATA», а к входу «D1» - выход «CLOCK».

4.6.9 Если считыватель имеет только один вход управления светодиодом, то он, независимо от цвета свечения, подключается к контакту «LEDG» контроллера.

4.6.10 Кнопка «ЗАПРОС ВЗЯТИЯ», при необходимости, подключается между клеммами «D0-1» («D0-2») и «GND1» («GND2») контроллера (см. рис. 16) («C2000-Proxy-H» имеет встроенную кнопку «ЗАПРОС ВЗЯТИЯ»).

	Контакт	Назначение
	В режиме ТМ	Вход/выход цепи данных считывателя
D0	В режиме Wiegand	Вход для подключения цепи данных «D0» считывателя
	В режиме ABA Track-II	Вход для подключения цепи данных «DATA» считывателя
	В режиме ТМ	Не используется
D1	В режиме Wiegand	Вход для подключения цепи данных «D1» считывателя
	B DOWING ABA Track-II	Вход для подключения цепи тактового сигнала «CLOCK»
в режиме АВА Тгаск-П		считывателя
LED	DR	Выход управления красным светодиодом считывателя
LED	DG	Выход управления зелёным светодиодом считывателя
BEI	EP	Выход управления звуковым сигнализатором считывателя

Таблица 1. Назначение контактов для подключения считывателя

Рисунок 10. Схемы подключения контактных устройств Touch Memory «Считыватель-2» и «Считыватель-3»

Вариант 1

Для считывателей с током потребления не более 100 мА, удалённых от контроллера

не более чем на 50 м

C2000-2	2		
XT2 (XT	3)	Считыва	атель
BEEP1(2)	7	BEEP	
LEDR1(2)	6	LEDR	
LEDG1(2)	5	 LEDG	
D0-1(-2)	3	ТМ	
+12B1(2)	2	 +12B	
GND1(2)	1	 GND	

Вариант 2

Для считывателей с большим током потребления или удалённых от контроллера более чем на 50 м

	C20	00-2					
	XT2	(XT3)			Считыва	тель
	BEEP	P1(2)	7	 		BEEP	
	LEDR	R1(2)	6	 		LEDR	
	LEDG	61(2)	5			LEDG	
	D0-1	(-2)	3	 		ТМ	
	GND	1(2)	1			+12B	
ΡИ	П-12				\geq	GND	
	Ē	+12	3		-		
		0B]		

Рисунок 11. Схема подключения считывателей с интерфейсом Touch Memory

Вариант 1

Для считывателей с током потребления не более 100 мА, удалённых от контроллера не более чем на 50 м

C2000-2		0	
XT2 (XT3)		Считыва	атель
BEEP1(2)	7	BEEP	
LEDR1(2)	6	LEDR	
LEDG1(2)	5	 LEDG	
D1-1(-2)	4	D1	
D0-1(-2)	3	D0	
+12B1(2)	2	 +12B	
GND1(2)	1	GND	

Вариант 2

Для считывателей с большим током потребления или удалённых от контроллера более чем на 50 м

	C2(000-2		Считыва	тель
	XT2	2 (XT3)			
	BE	EP1(2)	7	BEEP	
	LE	DR1(2)	6	LEDR	
	LED)G1(2)	5	 LEDG	
	D1	-1(-2)	4	 D1	
	D0	-1(-2)	3	 D0	
	GN	ID1(2)	1	+12B	
ΡV	1П-1	2		GND	
		+12	3		
		0B			

Рисунок 12. Схема подключения считывателей с интерфейсом Wiegand или ABA Track-II

(C2000-Proxy H, (C2000-Proxy),			C2000-2	C2000-2		Proxy-KeyXX		KeyXX		C2000-2 XT2 (XT3)	
	Proxy-5AG,							GND	черный	 1	GND1(2)	
	Proxy-5AB			XT2 (XT3))			+12V	красный	 2	+12B1(2)	
	LEDR (Инд.)	4	5	LEDG1(2)				WD0	зеленый	3	D0-1(-2)	
	D0 (Вых.)	3	 3	D0-1(-2)				WD1	белый	 4	D1-1(-2)	
	GND (0B)	2	 1	GND1(2)				LED	голубой	 5	LEDG1(2)	
	+U (+Uпит)	1	 2	+12B1(2)				BEEP	серый	 7	BEEP1(2)	

Рисунок 13. Схема подключения считывателей С2000-Proxy, C2000-Proxy H, Proxy-5AG, Proxy-5AB, Proxy-KeyAV, Proxy-KeyAH, Proxy-KeyMV, Proxy-KeyMH

Proxy-2А исп.0	01,		X	Г2 (XT3)	C2000-2
Proxy-2M,	+12B	1	 2	+12B1(2)	
Proxy-2MA,	GND	2	1	GND1(2)	
Proxy-3A, Proxy 3M	D0	3	 3	D0-1(-2)	
Proxy-3MA	D1	4	4	D1-1(-2)	
i roxy on a c	LEDG	5	5	LEDG1(2)	
	LEDR	6	6	LEDR1(2)	
	BEEP	7	7	BEEP1(2)	

Состояние микропереключателя считывателя

Вариант 1. Интерфейс Touch Memory

Вариант 2. Интерфейс Wiegand

Рисунок 14. Схема подключения считывателей Proxy-2A исп.01, Proxy-2M, Proxy-2MA, Proxy-3A, Proxy-3M, Proxy-3MA

Вариант 1. Интерфейс Touch Memory

Ρ	R-A03,.	,PR-P16			C2000-2	
					XT2 (XT3)	
	GND	Чёрный		1	GND1(2)	
	+V	Красный		2	+12B1(2)	
	D0/Sig	Зелёный	•	3	D0-1(-2)	
	D1/Sig	Белый		4	D1-1(-2)	
	Led-G	Оранж.		5	LEDG1(2)	
	Led-R	Коричн.		6	LEDR1(2)	
	BEEP	Жёлтый		7	BEEP1(2)	

Вариант 2. Интерфейс Wiegand

Ρ	R-A03,.	, PR-P16		C2000-2	
				XT2 (XT3)	
	GND	Чёрный	1	GND1(2)	
	+V	Красный	 2	+12B1(2)	
	D0/Sig	Зелёный	3	D0-1(-2)	
	D1/Sig	Белый	4	D1-1(-2)	
	Led-G	Оранж.	 5	LEDG1(2)	
	Led-R	Коричн.	 6	LEDR1(2)	
	BEEP	Жёлтый	 7	BEEP1(2)	

*Для считывателей **PR-H03**, **PR-H05**, **PR-M03**: в режиме Touch Memory белый проводник (D1) никуда не подключается. Формат данных и полярность сигналов управления индикаторами и звуком этих считывателей задаются перемычками:

Вариант 1. Интерфейс Touch Memory					
Красная	Удалить				
Жёлтая	Удалить				
Оранжевая	Удалить				
Зелёная	Удалить				

Вариант 2. Интерфейс Wiegand					
Красная	Оставить				
Жёлтая	Удалить				
Оранжевая	Оставить				
Зелёная	Оставить				

Рисунок 15. Схема подключения считывателей PR-A03, PR-A05, PR-A09, PR-A16, PR-EH03, PR-EH05, PR-EH09, PR-H16, PR-M03, PR-P05, PR-P09, PR-P16

Рисунок 16. Схема подключения кнопки «ЗАПРОС ВЗЯТИЯ»

4.7 Режим «Две двери на вход»

4.7.1 Подключите оборудование первой двери (считыватель, замок, кнопку "ВЫХОД", датчик открывания двери) к контактам контролера, обозначение которых заканчивается цифрой 1, а оборудование второй двери — к контактам, обозначение которых заканчивается цифрой 2 (см. рис. 17).

4.7.2 Подключите электромагнитный замок (защёлку) к источнику питания (используйте либо отдельный источник питания, либо источник питания контроллера). При подключении контроллера и замка к одному источнику, цепи питания выполняйте различными парами проводов, объединив их только на клеммах источника питания.

Рисунок 17. Схема подключения контроллера в режиме «Две двери на вход»

4.8 Режим «Одна дверь на вход/выход»

4.8.1 Подключите цепи управления замком и датчик прохода к контактам контроллера, обозначение которых заканчивается цифрой 1 (см. рис. 18). Второе реле может управляться по интерфейсу RS-485 командами от пульта «C2000M» или компьютера. 4.8.2 При необходимости дистанционного управления замком подключите кнопки «BXOД» и «BЫХОД» (см. рис. 7).

4.8.3 Подключите электромагнитный замок (защёлку) к источнику питания (используйте либо отдельный источник питания, либо источник питания контроллера). При подключении контроллера и замка к одному источнику, цепи питания выполняйте различными парами проводов, объединив их только на клеммах источника питания.

Рисунок 18. Схема подключения контроллера в режиме «Одна дверь на вход/выход»

4.9 Режим «Турникет»

4.9.1 Подключите цепи управления турникетом и датчик прохода (проворота) в соответствии с рис. 19. Подключение датчиков прохода с различными типами выходов показано на рис. 8.

4.9.2 Если турникет имеет один датчик проворота, срабатывающий при любом направлении прохода, то он подключается параллельно к соответствующим входам обоих каналов контроллера, как показано на рис. 21.

Рисунок 19. Схема подключения контроллера в режиме «Турникет»

4.10 Режим «Шлагбаум»

4.10.1 Подключите цепи управления шлагбаумом, датчики проезда и детекторы автомобиля в соответствии с рис. 20.

Рисунок 20. Схема подключения контроллера в режиме «Шлагбаум»

«С2000-2» АЦДР.425723.001 ИМ Изм.5 АЦДР.5172-18 от 05.02.2019

4.10.2 Если для управления шлагбаумом требуется только одно открывающее реле, то используется только реле 1 контроллера.

4.10.3 Если для управления шлагбаумом требуется коммутировать напряжение более 30 В или ток более 7 А, или мощность более 100 Вт, то на выходе контроллера необходимо поставить релейные усилители, например, «УК-ВК».

4.10.4 Если вместо двух датчиков проезда используется один, то он подключается параллельно к соответствующим входам обоих каналов контроллера (см. рис. 21).

Датчик с нормально замкнутыми контактами

Датчик с нормально разомкнутыми контактами

Рисунок 21. Схема подключение одного датчика прохода (проворота)

4.10.5 При необходимости, подключите светофоры через релейные усилители «УК-ВК/06», коммутирующие напряжение до 220 В (переменного тока) и ток до 10 А (см. рис. 22).

Рисунок 22. Схема подключения светофора к контроллеру «С2000-2» в режиме «Шлагбаум»

4.11 Режим «Шлюз»

4.11.1 Установите на входе в шлюз с каждой стороны (вне шлюза) два считывателя. На посту охраны установите две кнопки «ВЫХОД», две кнопки «ПОДТВЕРЖДЕНИЕ» и кнопку «ЗАПРЕТ».

4.11.2 Подключите датчики открывания дверей к контактам «DOOR1», «GND1», «DOOR2», «GND2» контроллера (см. рис. 23).

Рисунок 23. Схема подключения контроллера «С2000-2» в режиме «Шлюз»

4.11.3 Подключите электромагнитные замки (защёлки) к источнику питания (используйте либо отдельный источник питания, либо источник питания контроллера). При подключении контроллера и замка к одному источнику, цепи питания выполняйте различными парами проводов, объединив их только на клеммах источника питания.

4.12 Подключение источников питания

4.12.1 Подключите исправный источник питания к контактам «+12B» и «0В».

4.12.2 Соблюдайте полярность подключения к источнику питания.

Рекомендуется использовать резервированный источник питания серии РИП-12 производства компании «Болид».

4.13 Закройте крышку контроллера до характерного щелчка и зафиксируйте ее винтами крепления (при необходимости).

5 ПРОВЕРКА КОНТРОЛЛЕРА

5.1 Проверка проводится при нормальных климатических условиях по ГОСТ 15150-69:

- относительная влажность воздуха (45 80)%;
- температура окружающего воздуха (25 ± 10) °С;
- атмосферное давление (630 800) мм рт. ст., (84 106,7) кПа.

5.2 Подключение и отключение внешних цепей при проверках производится при отключённом питании контроллера.

5.3 Проверка основных параметров

5.3.1 Для проверки контроллера используйте пульт «С2000М». Подключите к пульту

цепи интерфейса RS-485 и цепи питания. Если контроллер используется в автономном режиме, то действия пп.5.3.1, 5.3.4, 5.3.5 выполнять не требуется.

5.3.2 Подайте питание на контроллер и пульт (если он используется).

5.3.3 Индикатор «Работа» контроллера должен перейти в режим непрерывного свечения зелёным цветом не более чем через 5 с. Звуковой сигнализатор должен издать сигнал «Включение».

Рисунок 24

5.3.4 В течение 1 мин после включения питания пульт должен показать сообщение об обнаружении устройства с сетевым адресом, соответствующим текущему адресу контроллера (заводской адрес контроллера – 127). На рис. 24 представлен индикатор пульта «С2000М» с соответствующим сообщением.

5.3.5 Если придёт несколько сообщений, накопившихся в буфере контроллера, их можно «пролистать» с помощью кнопок «▲» и «▼» на пульте «C2000M».

5.4 Проверка в режиме «Диагностика»

Перед включением режима «Диагностика» отключите цепи управления запорными устройствами, включение которых при проверке недопустимо!

5.4.1 Переведите контроллер в режим «Диагностика», выполнив три кратковременных и одно продолжительное нажатие на датчик вскрытия корпуса (тампер) при открытой крышке контроллера. Кратковременное нажатие – удержание кнопки в состоянии «нажато» в течение от 0,1 до 0,5 с. Продолжительное нажатие – удержание кнопки в состоянии «нажато» в течение не менее 1,5 с. Пауза между нажатиями – (0,2 – 1) с.

5.4.2 В случае исправности контроллера индикатор «Работа» мигает с большой частотой, а внутренний звуковой сигнализатор издаёт два коротких звуковых сигнала. Затем индикаторы «1» и «2» поочерёдно включаются 1 с красным цветом/ 1 с зелёным. Контакты реле 1 замыкаются в момент включения индикатора «1», а контакты реле 2 - в момент включения индикатора «2».

5.4.3 Проконтролируйте включение выходов «К1» и «К2», измерив сопротивление между контактами.

