

ООО «ПОЖГАЗПРИБОР»

У Т В Е Р Ж Д Е Н ПДАР.413311.001.1РЭ-ЛУ

ГАЗОАНАЛИЗАТОРЫ ОПТИЧЕСКИЕ СТАЦИОНАРНЫЕ ОГС-ПГП/М Руководство по эксплуатации ПДАР.413311.001.1РЭ

с изменением № 6

СОДЕРЖАНИЕ

1	Описание и работа	4	
1.1	Назначение	4	
1.2	Технические характеристики (свойства)	5	
1.3	Состав изделия	11	
1.4	Устройство и работа	14	
1.5	Обеспечение взрывобезопасности.	21	
1.6	Маркировка и пломбирование	23	
1.7	Упаковка	25	
2	Использование по назначению	26	
2.1	Эксплуатационные ограничения	26	
2.2	Подготовка газоанализаторов к использованию	27	
2.3	Использование газоанализаторов	29	
2.4	Порядок монтажа и демонтажа	32	
3	Техническое обслуживание	36	
3.1	Общие указания	36	
3.2	Меры безопасности	37	
3.3	Порядок технического обслуживания	37	
3.4	Техническое освидетельствование	40	
3.5	Консервация	40	
4	Текущий ремонт	41	
4.1	Общие указания	41	
4.2	Меры безопасности	41	
5	Хранение	42	
6	Транспортирование	43	
Прил	ожение А Схемы подключения газоанализаторов ОГС-ПГП/М	44	
Прил	Приложение Б Чертёж средств взрывозащиты		
Прил	Приложение В Протокол обмена RS-485		
Прил	ожение Г Протокол HART	53	
Прил	ожение Д Инструкция по монтажу Ex-кабельного ввода <i>E3XBF/NP/20s/M20</i>	57	
Прил	пожение Е Номинальная статическая функция преобразования	58	
Прил	пожение Ж Руководство пользователя	59	
Прил	ожение И Монтажные чертежи комплектующих деталей	67	

Настоящее Руководство по эксплуатации *ПДАР.413311.001.1РЭ* (далее по тексту — РЭ) предназначено для ознакомления обслуживающего персонала с техническими характеристиками газоанализаторов оптических стационарных *ОГС-ПГП/М* (далее по тексту — газоанализаторы). РЭ содержит основные технические данные, а также другие сведения, необходимые для его правильной и безопасной эксплуатации, транспортирования, хранения и обслуживания.

К эксплуатации и техническому обслуживанию газоанализаторов должны допускаться лица, имеющие достаточные навыки и знания для безопасного выполнения работ, ознакомленные с эксплуатационными документами на газоанализаторы.

РЭ распространяется на газоанализаторы, изготовленные в соответствии с $\Pi \square AP.413311.001.1TV.$

Структура условного обозначения газоанализаторов:

где:

ОГС-ПГП/М – коммерческое наименование газоанализаторов;

X1 — обозначение определяемого компонента [(CH₄; CH₄ -T) - метан, (C₃H₈; C₃H₈ -T) - пропан, (C₄H₁₀) — бутан, (C₅H₁₂) — пентан, (C₆H₁₄; C₆H₁₄ -T) - гексан, (CH₃OH) - метанол, (и-C₄H₁₀) - изобутан, (C₃H₆) — пропилен, (C₂H₆) — этан, (C₅H₁₀) — циклопентан, (C₇H₁₆) — гептан, (C₂H₅OH) — этанол, (HП) — пары нефтепродуктов];

Х2 – обозначение материала корпуса: А - алюминиевый сплав; С – нержавеющая сталь;

Газоанализаторы ОГС-ПГП/М имеют:

- сертификат соответствия ТР ТС 012/2011 № EAЭC RU C-RU.HA65.B.02115/24, выданный ОС ООО «ТехБезопасность» со сроком действия по 23.04.2029 г.;
- регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений №74126-19 (Приказ Федерального агентства по техническому регулированию и метрологии № 450 от 05.03.2025г.) со сроком действия по 20.02.2029 г.

Документ по содержанию и оформлению соответствует требованиям ГОСТ 2.601, ГОСТ 2.610.

В связи с постоянной работой по совершенствованию газоанализатора в его конструкцию и алгоритм работы могут быть внесены изменения, не отражённые в настоящем издании и не ухудшающие технические характеристики газоанализатора, в том числе, уровень взрывозащиты.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

- 1.1.1 Газоанализаторы предназначены для непрерывного автоматического измерения довзрывоопасных концентраций или объёмной доли горючих газов и паров горючих жидкостей (СН₄, СН₄—Т, С₃H₈, С₃H₈—Т, С₄H₁₀, С₅H₁₂, С₆H₁₄, С₆H₁₄—Т, СН₃OH, и-С₄H₁₀, С₃H₆, С₂H₆, С₅H₁₀, С₇H₁₆, С₂H₅OH, НП) в окружающей атмосфере, сигнализации превышения заданных порогов загазованности и передачи соответствующей информации на верхний уровень.
- 1.1.2 Газоанализаторы применяются для контроля загазованности атмосферы, атмосферы рабочей окружающей зоны, экологического мониторинга и обеспечения промышленной безопасности объектов, в том числе во взрывоопасных зонах помещений и наружных установок согласно маркировке взрывозащиты, эксплуатируемых во всех микроклиматических районах на суше и на море, а также могут использоваться вместе с системой управления криогенной бортовой газотопливной системой (СУ КБГС) судна) с целью осуществления функций контроля загазованности газоопасных помещений судна. Для обслуживания газоанализаторов месту эксплуатации опционально может устанавливаться Hart-порт1 ДЛЯ подключения Hart-коммуникаторов.
- 1.1.3 Газоанализаторы соответствуют требованиям технических условий ПДАР.413311.001.1ТУ, ГОСТ 13320-81, ГОСТ Р 52350.29.1-2010, ГОСТ Р 52931-2008, технического регламента Таможенного союза ТР ТС 012/2011, ГОСТ 31610.0-2019, ГОСТ IEC 60079-1-2013, а также СТО Газпром 2-1.17-629-2012 в части требованиям к датчикам.

 $^{^{1}}$ Поставляется по требованию Заказчика за отдельную плату.

- 1.1.4 Газоанализаторы, как изделия по ГОСТ 13320-81, классифицируются:
 - в зависимости от режима работы непрерывного действия;
- в зависимости от возможности перемещения в процессе эксплуатации – стационарные.
- 1.1.5 Газоанализаторы, как изделия по ГОСТ Р 52931-2008, классифицируется:
- по наличию информационной связи предназначенные для информационной связи с другими изделиями;
 - по виду энергии носителя сигналов в канале связи электрические;
 - по эксплуатационной законченности третьего порядка;
 - по метрологическим свойствам средства измерения;
- по защищённости от воздействия окружающей среды взрывозащищённые.
 - 1.1.6 Принцип измерения оптическая (ИК) абсорбция.
 - 1.1.7 Способ отбора пробы диффузионный.
 - 1.1.8 Газоанализаторы обеспечивают информационную и электрическую совместимость с внешними техническими средствами, поддерживающими работу с интерфейсом RS-485, дискретными («сухой контакт» реле) и аналоговыми (токовая петля 4÷20 мА/НАRT) сигналами.
 - 1.2 Технические характеристики (свойства)
 - 1.2.1 Основные технические характеристики, условия эксплуатации, размеры и масса газоанализаторов приведены в таблице 1, метрологические характеристики приведены в таблицах 2, 3.
 - 1.2.2 По устойчивости к климатическим воздействиям газоанализаторы удовлетворяет требованиям ГОСТ 15150-69 к категории исполнения В1.

- 1.2.3 По защите обслуживающего персонала от воздействия электрического тока газоанализаторы соответствуют классу III по ГОСТ 12.2.007.0.
- 1.2.4 По взрывозащите газоанализаторы являются электрооборудованием II, подгруппы IIC; группы имеет уровень «взрывобезопасный, Gb»; взрывозащиты вид взрывозащиты «взрывонепроницаемая оболочка «d»; температурный класс Т4.

Таблица 1

Наименование параметра, характеристики			Значение	
Время прогрева, с, не более			30	
Время срабатывания при превышен более	нии порогов си	гнализации, с, не	0,5	
Номинальное напряжение питания	(диапазон), В		24 (18 -	- 32)
Максимальная мощность потребля	емая, Вт		4,5	
Нагрузочные характеристики конта	актов реле, не	напряжение, В	30 DC	120 AC
более		ток, А	3	3
Аналоговый выход	4÷20 мА/НАRT			
Цифровой интерфейс			RS-485 Mod	lbus RTU
Максимальное значение площади поперечного сечения присоединяемых проводников, мм ²			2,5	
Рабочие условия:	температура, °С		-60 ÷ - -70 ÷ +	120^{1}
т або тне условия.	относительная влажность, %		20 ÷ 95	
	атмосферное давление, кПа			
Габаритные размеры, мм, не более				x106
може ил на балаз корпус из алюминиевого сплава			3.5	
Масса, кг, не более корпус из нержавеющей стали			5.5	
Интервал между поверками, год			3	
Защищённость от влияния пыли и воды по ГОСТ 14254			IP66/	67
Средняя наработка на отказ, ч, не менее			1000	00

_

¹ Согласно сертификату соответствия № ЕАЭС RU C-RU.НА65.В.02115/24 выданным органом по сертификации продукции ОС ООО «ТехБезопасность», со сроком действия по 23.04.2029 г., газоанализаторы допущены к эксплуатации в диапазоне температур от - 70 до +120 °C, при этом метрологические характеристики в диапазоне температур от -70 до -60 °C и +90 до +120 °C не нормированы. Газоанализаторы с расширенным температурным диапазоном рабочих условий поставляется по требованию Заказчика.

Наименование параметра, характеристики	Значение
Средний срок службы, лет, не менее	15
Гарантийный срок эксплуатации, месяцев	24
Срок сохраняемости до ввода в эксплуатацию, в упаковке, выполненной изготовителем, месяцев	12

Таблица 2

	Диапазон измерений	Пределы допускаемой	
Определяемый компонент	определяемого компонента,	основной абсолютной	
	% (% НКПР)	погрешности, % (% НКПР)	
Manage (CH)	от 0 до 4,4 %	±(0,11 %+0,05×C*)	
Метан (СН4)	(от 0 до 100 % НКПР)	$(\pm(2.5 \% \text{ HK}\Pi P + 0.05 \times \text{C}^*))$	
	от 0 до $2,2$ % включ.	±0,13 %	
Метан (СН4-Т)	(от 0 до 50% НКПР включ.)	(±3 % НКПР)	
	св. 2,2 до 4,4 %	±0,22 %	
	(св. 50 до 100 % НКПР)	(±5 % НКПР)	
Пропан (С ₃ Н ₈)	от 0 до 1,7 %	±(0,03 %+0,05×C*)	
Tiponan (C3118)	(от 0 до 100 % НКПР)	$(\pm (1.5 \% \text{ HK}\Pi P + 0.05 \times \text{C}^*))$	
	от 0 до 0.85 % включ.	±0,05 %	
Пропан (С ₃ H ₈ -Т)	(от 0 до 50 % НКПР включ.)	(±3 % НКПР)	
	св. 0,85 до 1,70 %	±0,09 %	
	(св. 50 до 100 % НКПР)	(±5 % НКПР)	
Бутан (C ₄ H ₁₀)	от 0 до 0,7 %	±0,056 %	
251001 (042110)	(от 0 до 50 % НКПР)	(±4 % HKΠP)	
Пентан (С ₅ Н ₁₂)	от 0 до 0,55 %	±0,05 %	
110111011 (051112)	(от 0 до 50 % НКПР)	(±4 % НКПР)	
Гексан (C ₆ H ₁₄)	от 0 до 0,5 %	±0,04 %	
1 (001114)	(от 0 до 50 % НКПР)	(±4 % НКПР)	
	от 0 до $0,5$ % включ.	±0,03 %	
Гексан (С ₆ H ₁₄ -Т)	(от 0 до 50 % НКПР включ.)	(±3 % НКПР)	
1 executi (C ₀ 11 ₁ 4 1)	св. 0,5 до 1,0 %	±0,05 %	
	(св. 50 до 100 % НКПР)	(±5 % НКПР)	
Метанол (СН ₃ ОН)	от 0 до 3 %	±0,24 %	
Wiciahon (CII3OII)	(от 0 до 50 % НКПР)	(±4 % НКПР)	
Изобутан (и-C ₄ H ₁₀)	от 0 до $0,65$ %	±0,05 %	
Изобутан (и-С4Н10)	(от 0 до 50 % НКПР)	(±4% НКПР)	
Пиотучну (С. П.)	от 0 до 1,0 %	±0,08 %	
Пропилен (С ₃ Н ₆)	(от 0 до 50 % НКПР)	(±4% НКПР)	
Dray (C.II.)	от 0 до 1,2 %	±0,10 %	
Этан (С ₂ Н ₆)	(от 0 до 50 % НКПР)	(±4% НКПР)	
Пикланаумау (С. П.)	от 0 до 0,7 %	±0,06 %	
Циклопентан (C_5H_{10})	(от 0 до 50 % НКПР)	(±4% НКПР)	
E (CH.)	от 0 до 0,425 %	±0,04 %	
Гептан (C ₇ H ₁₆)	(от 0 до 50 % НКПР)	(±4% НКПР)	

	Диапазон измерений	Пределы допускаемой	
Определяемый компонент	определяемого компонента,	основной абсолютной	
	% (% НКПР)	погрешности, % (% НКПР)	
Этанол (C ₂ H ₅ OH)	от 0 до 1,55 %	±0,16 %	
Этанол (C ₂ H ₅ OH)	(от 0 до 50 % НКПР)	(±5 % НКПР)	
Пары нефтепродуктов (НП)	от 0 до 50 % НКПР	±5% НКПР	

Примечания

- 1. $C_{\text{вх}}^*$ значение объёмной доли (массовой концентрации) определяемого компонента в газовой смеси, подаваемой на вход газоанализатора, % (% НКПР);
- 2. значения НКПР (нижний концентрационный предел распространения пламени) в соответствии с ГОСТ 31610.20-1-2020;
 - 3. диапазон показаний газоанализаторов от 0 до 100 % НКПР вне зависимости от исполнения;
- 4. пределы допускаемой основной абсолютной погрешности газоанализаторов нормированы только для смесей, содержащих только один определяемый компонент.
- 5. пары нефтепродуктов градуировка газоанализаторов ОГС-ПГП/М-НП (нефтепродукты от 0 до 50 % НКПР) осуществляется изготовителем на один из определяемых компонентов:
 - бензин неэтилированный по ГОСТ Р 51866-2002,
 - топливо дизельное по ГОСТ 305-2013,
 - керосин по ГОСТ Р 52050-2020,
 - уайт-спирит по ГОСТ 3134-78,
 - топливо для реактивных двигателей по ГОСТ 10227-86,
- бензин автомобильный по техническому регламенту "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту",
 - бензин авиационный по ГОСТ 1012-2013.
- 6. диапазон измерений объёмной доли метанола (CH₃OH) для газоанализаторов, произведённых до 2022 г., от 0 до 2,75 %; пределы допускаемой основной абсолютной погрешности $\pm 0,22$ % (± 4 % HKПР).

Таблица 3

	1
Наименование характеристики	Значение
Предел допускаемой вариации выходного сигнала, в долях от предела допускаемой основной погрешности	0,5
Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды от нормальной в диапазоне рабочих температур, от -60 до +90 °C, на каждые 10 °C, в долях от предела допускаемой основной погрешности	±0,2
Пределы допускаемой дополнительной погрешности от изменения относительной влажности окружающей среды в диапазоне от 20 до 95 % (без конденсации) на каждые 10 %, в долях от предела допускаемой основной погрешности	±0,2
Пределы допускаемой дополнительной погрешности от изменения напряжения питания от номинального 24 В в пределах от 18 до 32 В, в долях от предела допускаемой основной погрешности	±0,2
Изменения выходных сигналов за 24 ч непрерывной работы, в долях от предела допускаемой основной погрешности	±0,5
Время установления выходного сигнала $T_{0,5}$, с, не более	10
Время установления выходного сигнала Т _{0,9} , с, не более (при расходе не менее 1 л/мин) – для исполнения ОГС-ПГП/М пропан, бутан, гексан, пентан, метанол,	
изобутан, пропилен, этан, циклопентан, гептан, этанол, ПН – для исполнения ОГС-ПГП/М метан	15 10

- 1.2.5 Газоанализаторы имеют Ex-маркировку 1Ex db IIC T4 Gb X, и могут устанавливаться во взрывоопасных зонах помещений и наружных установок (категория смеси II по газу).
- 1.2.6 Газоанализаторы взрывобезопасны и не содержат в своём составе опасных или ядовитых веществ, способных нанести вред окружающей природной среде, здоровью и генетическому фонду человека при испытании, хранении, транспортировании, эксплуатации и утилизации.
- 1.2.7 Газоанализаторы устойчивы с критерием качества функционирования «А» к:
- электростатическим разрядам со степенью жёсткости 3 по ГОСТ 30804.4.2;
- наносекундным импульсным помехам (НИП) со степенью жёсткости 4 по ГОСТ 30804.4.4;
- радиочастотному электромагнитному полю (РЭП) в диапазоне от 80 до 1000 МГц со степенью жёсткости 4 по ГОСТ 30804.4.3;
- микросекундным импульсным помехам большой энергии со степенью жёсткости 3 по ГОСТ Р 51317.4.5;
- кондуктивным помехам, наведённым радиочастотными электромагнитными полями со степенью жёсткости 3 по ГОСТ Р 51317.4.6;
- неповторяющимся затухающим колебательным переходным процессам (звенящей волне), наведёнными радиочастотными электромагнитными полями со степенью жёсткости 3 по ГОСТ IEC 61000-4-12-2016;
- кондуктивным помехам в полосе частот от 0 до 150 к Γ ц со степенью жёсткости 3 по Γ OCT P 51317.4.16;
- электромагнитным помехам в соответствии с требованиями разд. 10 ч. 4 «Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов» 2019 г.
- 1.2.8 Газоанализаторы по ГОСТ 30546.1-1998 относятся к нулевой группе сейсмобезопасности.

- 1.2.9 Газоанализаторы по ГОСТ 30546.1-1998 сейсмостойки при установке непосредственно на строительных конструкциях при воздействии землетрясений интенсивностью 9 баллов по МЅК-64 при уровне установки над нулевой отметкой до 20 м.
- 1.2.10 Газоанализаторы устойчивы к воздействию синусоидальной вибрации для изделий группы исполнения V2 по ГОСТ Р 52931-2008.
- 1.2.11 Газоанализаторы в упаковке прочны к воздействию синусоидальной вибрации для изделий группы исполнения F2 по ГОСТ Р 52931-2008 и к механическим ударам многократного действия с параметрами: ускорение до 30 g, продолжительностью 11 мс, форма ударной волныполусинусоида.
- 1.2.12 Газоанализаторы в упаковке прочны к воздействию следующих климатических факторов по ГОСТ Р 52931-2008:
 - температура окружающего воздуха от минус 60 до плюс 90 °C;
 - температура окружающего воздуха от минус 70 до плюс 120 °C для газоанализаторов с расширенным температурным диапазоном;
 - относительная влажность воздуха от 20 до 95 % при плюс 35 °C без конденсации влаги.
- 1.2.13 Газоанализаторы устойчивы к внешним воздействиям в соответствии с требованиями разд. 10 ч. 4 «Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов» 2019 г.

1.3 Состав изделия

- 1.3.1 Конструктивно газоанализаторы (см. рис. 1) представляют единую моноблочную конструкцию из жёстко связанных между собой составных частей:
- корпуса преобразователя газового (ПГ) изготовленного из алюминиевого сплава (сплав Д16Т или аналог), покрытого полиэфирной краской толщиной 60-120 мкм, или нержавеющей стали (03X18H11 или аналог), имеющего секции и направляющие для установки электронного модуля;
- основания/вводного отсека изготовленного из алюминиевого сплава (сплав Д16Т или аналог), покрытого полиэфирной краской толщиной 60-120 мкм, или нержавеющей стали (03Х18Н11 или аналог) с двумя вводными отверстиями для Ех кабельных вводов с диаметром резьбы по требованию заказчика (М20х1,5; М25х1,5; резьба ¾" NPT), а также глухими отверстиями с резьбой для крепления кронштейна, внутри отсека размещена клеммная плата для монтажа сигнальных проводов, проводов питания и соединения с ПГ и НАRT-портом.
- кронштейна с четырьмя отверстиями для монтажа на несущую поверхность;

1 – кронштейн; 2 – основание; 3 – Ex- кабельные вводы; 4 – корпус $\Pi\Gamma$; 5 –оптико-электронный узел; 6 – крышка $\Pi\Gamma$; 7 – винтовой зажим «земля»; 8 – маркировка. Рисунок 1 – Внешний вид газоанализатора без LED-индикатора

ПГ имеет в своём составе в качестве чувствительного элемента инфракрасный оптический газовый сенсор (пироэлектрический приёмник), и электронную схему, которая обеспечивает формирование цифрового и аналогового сигналов, содержащих информацию об измеренной концентрации определяемого газа.

Газоанализаторы имеют встроенную флэш-память микроконтроллера с записанными градуировочными коэффициентами.

В газоанализаторах имеются три независимых реле, переключаемых по превышению предупредительного и аварийного порога, а также при возникновении неисправности.

Имеется возможность настраивать пороги срабатывания реле и другие параметры по интерфейсам RS-485 и HART. Установка нулевых показаний и чувствительности газоанализаторов может осуществляться с помощью магнитного ключа.

- 1.3.2 Модифицированный вариант газоанализатора (см. рис. 2) имеет LED-индикатор состояния/режимов работы на основе 4-х цветного светодиода, светопровод которого выведен на внешнюю поверхность корпуса ПГ под прижимную втулку.
- 1.3.3 Корпус ПГ вместе с вводным отсеком и крышкой выполнены во взрывозащищённом исполнении из нержавеющей стали или алюминиевого сплава, и представляют из себя взрывонепроницаемую оболочку.
- 1.3.4 От обледенения и запотевания оптических элементов используется гибкий электронагреватель, установленный внутри взрывозащищённого корпуса.
 - 1.3.5 Габаритные чертежи газоанализаторов приведены на рис. 3, 4.

1 — кронштейн; 2 — вводный отсек; 3 — Ex- кабельные вводы; 4 - корпус преобразователя газового; 5 — оптико-электронный узел; 6 — крышка; 7 — винтовой зажим «земля»; 8 — 4-х цветный LED-индикатор.

Рисунок 2 – Внешний вид газоанализатора с LED-индикатором

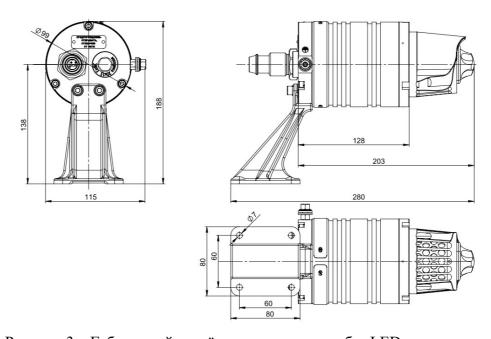


Рисунок 3 – Габаритный чертёж газоанализатора без LED-индикатора

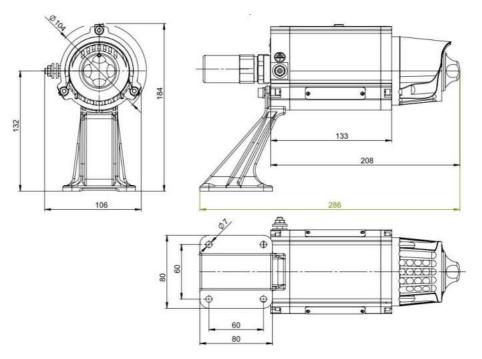


Рисунок 4 – Габаритный чертёж газоанализатора с LED-индикатором

- 1.4 Устройство и работа
- 1.4.1 Газоанализаторы являются одноканальными стационарными автоматическими приборами непрерывного действия.
- 1.4.2 Принцип работы газоанализаторов с оптическим сенсором (ИК) основан на поглощении молекулами определяемого газа энергии светового потока в инфракрасной области спектра. Инфракрасные датчики не искажают пробу, и им не требуется для работы присутствие кислорода. Выходной сигнал ИК-датчиков в наибольшей степени не зависит от скорости потока пробы. У таких датчиков продолжительный срок службы при отсутствии коррозии, загрязнения или механического повреждения. Этот тип датчиков позволяет использовать самодиагностику для проверки чувствительности к определяемому компоненту.
 - 1.4.3 Газоанализаторы обеспечивают следующую функциональность:
- измерение значения объёмной доли определяемого компонента в атмосфере рабочей зоны;

оптическую многоцветную индикацию состояния/режима работы газоанализатора (для варианта с LED-индикатором), состояние газоанализатора в различных режимах/состояниях указано в таблице 4;

Таблица 4

Режим/состояние		LED индикатор	Токовый выход	Контакты реле (по умолчанию)¹		
		иноикитор	(mA)	Неисправность	Порог 1	Порог 2
Нет питания		-	-	разомкн	разомкн	разомкн
	инициализация импульсный		4	замкн	разомкн	разомкн
«НОРМА»	постоянный		4	замкн	разомкн	разомкн
«ЗАГАЗОВАННОСТЬ»	Порог 1 импульсный		4 ÷ 20	замкн	замкн	разомкн
«SALASOBALITIOCTD»	Порог 2 постоянный			замкн	замкн	замкн
«НЕИСПРАВНОСТЬ»	постоянный		2	разомкн	разомкн	разомкн
«СЕРВИС»	импульсный/ постоянный		3	замкн	разомкн	разомкн

- обработку и выдачу по проводным линиям результатов измерений, предупредительных и аварийных сообщений по цифровому интерфейсу RS-485 с открытым протоколом MODBUS RTU®, а также с помощью дискретных («сухие контакты» реле) и аналоговых (токовая петля 4-20 (0-20) мА/НАRТ) сигналов для начала действий по остановке технологического процесса и принятию мер безопасности².
- гальваническая изоляция схемы реализована за счёт использования встроенного высокотехнологичного DC/DC преобразователя, что позволяет обеспечить высокую помехозащищённость и надёжность;

¹ Нормальное состояние контактов реле может быть установлено по требованию Заказчика

² Для выполнения функции может понадобиться дополнительное оборудование.

- встроенная система регистрации событий, построенная на базе часов реального времени, долговечных элементов питания и энергонезависимой памяти современного микроконтроллера. Доступ к архиву событий реализован посредством протокола Modbus RTU и тестовой программы OGS_M Test. *Реализовано в изделиях, выпускаемых с 4-го квартала 2023 года*.
- 1.4.4 Газоанализаторы имеют встроенное и внешнее программное обеспечение (ПО).
 - 1.4.4.1 Встроенное ПО обеспечивает следующую функциональность:
- сбор и обработку информации, измеренной чувствительными элементами (пироприемник, датчик температуры) и преобразованной через АЦП, расчёт объёмной доли или концентрации измеряемого компонента в атмосфере рабочей зоны;
- самодиагностику оптико-электронного узла, контроль запылённости оптических элементов и исправности пары приёмник-излучатель;
- проведение концентрационной калибровки и температурной градуировок;
 - формирование цифровых выходов посредством HART и RS-485 модемов;
 - невозможность для пользователя самостоятельно корректировать управляющую программу;
 - регистрацию событий в энергонезависимой памяти (архив) и выгрузку данных;
 - сохранение введённых параметров после отключения питания.
 - 1.4.4.2 Описание метрологически значимой части встроенного ПО:
- сравнение и анализ показаний опорного и рабочего каналов приёмника;

- расчёт концентрации измеряемого компонента в соответствии с предустановленными концентрационными характеристиками.
- 1.4.4.3 Встроенное ПО записано во флэш-память микроконтроллера газоанализатора на предприятии изготовителе, и не может быть изменено потребителем.
- 1.4.4.4 Защита встроенного ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р50.2.077-2014.
- 1.4.4.5 Внешнее ПО представлено тестовой программой (утилитой) *OGS_M Test*, входящей в комплект поставки (Руководство пользователя см. Приложение Ж).
 - 1.4.4.6 Внешнее ПО обеспечивает следующую функциональность:
 - настройка параметров обмена;
 - настройка значений порогов срабатывания;
 - проведение концентрационной калибровки;
 - однозначное определение версии встроенного ПО.
- 1.4.4.7 Идентификационные данные метрологически значимой части ПО указаны в таблице 5.

Таблица 5

	Значение			
Идентификационные данные	для газоана произведённ	для		
(признаки)	ОГС-ПГП/М	ОГС-ПГП/М (с опцией LED- индикатора)	газоанализаторов, произведённых после 2024 г.	
Идентификационное наименование ПО	OGS_FW_322.hex	OGS_FW_422.hex	OGSS_5.XX.bin	
Номер версии (идентификационный номер) ПО	v 3.22	v 4.22*	5.XX**	
Цифровой идентификатор ПО	AAE4E0A3	1705622B	-	
Алгоритм вычисления контрольной суммы исполняемого кода	CRC32		-	

Примечания

^{*} номер версии ПО должен быть не ниже указанного в таблице. Значение контрольной суммы, приведённое в таблице, относится только к файлу ПО версии, обозначенной в таблице.

^{**}ХХ - относится к метрологически незначимой части ПО и принимает значения от 0 до 99.

- 1.4.4.8 Уровень защиты внешнего ПО от непреднамеренных и преднамеренных изменений соответствует «высокому» уровню по Р 50.2.077-2014.
 - 1.4.5 Описание выходных сигналов.
 - 1.4.5.1 Аналоговый выход.

Газоанализаторы оснащены стандартным интерфейсом — токовая петля $4\div20$ мА. Газоанализаторы генерируют ток в диапазоне $0\div22$ мА посредством гальванически изолированной схемы питания и цифроаналогового преобразователя, что делает сигнал независимым от падения напряжения на общем проводе питания группы приборов при большом удалении от приёмного устройства или просадки по другим причинам (см. Приложение A).

Диапазон $(4\div20)$ мА используется для передачи текущего значения измерения, диапазон $(0\div4)$ мА для передачи служебных и диагностических сигналов, значение (22 ± 1) мА для передачи сигнала превышения диапазона измерения.

Газоанализаторы ОГС-ПГП/М имеют активный токовый выход (источник). С 1-го квартала 2024 года в схеме изделия реализована возможность подключения как активного, так и пассивного токового выхода (потребитель), когда для построения токовой петли используется внешний источник питания.

Четырёхпроводная схема подключения с активным выходом приведена в Приложении A, рисунок A.1.

Трёхпроводная схема подключения с пассивным выходом приведена в Приложении A, рисунок A.2.

Вариант схемы подключения к устройству пороговому УП-ПГП-А, или аналогичному модулю ввода промышленного контроллера, приведён в Приложении A, рисунок A.3.

1.4.5.2 Дискретные сигналы.

Газоанализаторы оснащены двумя реле предупредительной (Порог 1) и аварийной сигнализации (Порог 2), контакты которых замыкаются при превышении порогов, и одним реле «Неисправность», контакты которого размыкаются при дефекте или отключении, группы контактов реле постоянно выведены на клеммную плату. Для повышения надёжности одноименные группы контактов соединены параллельно.

1.4.5.3 Магнитный интерфейс.

Предназначен для управления газоанализаторами на месте установки (в т.ч. во взрывоопасных зонах). Интерфейс построен на датчике холла для реагирования на любой полюс магнита в точке «Х» на корпусе ПГ.

Функции магнитного интерфейса:

- концентрационная калибровка (для газоанализаторов с LEDиндикатором);
 - установка «нуля».
- установка параметров Modbus адреса и скорости обмена в значения «по умолчанию».

1.4.5.4 Цифровой интерфейс RS-485.

Газоанализаторы оснащены стандартными интерфейсами RS-485, протокол Modbus в режиме RTU. Тип линии интерфейса RS-485 — двухпроводная экранированная витая пара. При подключении газоанализаторов следует:

- для корректной связи устройств правильно присоединять сигнальные цепи, называемые A и B;
- обеспечить согласование «открытого» конца кабеля с остальной линией путём включения терминального резистора номиналом 120 Ом, для этого джампер **X5** (см. рис. 6) на клеммной плате переводят в положение «ON».

Типовая схема подключения приведена в Приложении А, рисунок А.4.

Вариант схемы подключения к устройству пороговому УП-ПГП-Ц, или аналогичному модулю ввода промышленного контроллера, приведён в Приложении A, рисунок A.5.

Протокол обмена с контроллером верхнего уровня приведён в *Приложении В*: 1.4.5.5 HART интерфейс.

Для вывода информации через разъем X1 посредством протокола HART (см. Приложение Γ) используется встроенный модем сигналов стандарта *Bell 202*.

С целью конфигурирования газоанализаторов на месте установки (в т.ч. во взрывоопасных зонах) к разъёму X1 подключается опциональный HART-порт.

Для согласования нагрузки для HART-порта устанавливают перемычку на джампер **Х9.**

НАКТ-порт (см. рис. 5) предназначен для подключения НАКТ-коммуникатора, является Ех-компонентом и представляет собой конструкцию из металлического корпуса (сталь 03Х18Н11 или аналог) с наружной резьбой под вводное отверстие в корпусе ПГ, прокладки и крышки с внутренней резьбой. Внутри корпуса установлены две платы с радиокомпонентами (блок искрозащиты, залитый компаундом, плата соединительная с контактами для подключения коммуникатора).

Рисунок 5 – Общий вид HART-порта

По взрывозащите НАRТ-порт является Ех-компонентом, имеет Ех-маркировку — Ех db ma [ia Ga] IIC Gb U (сертификат соответствия ТР ТС 012/2011 № ЕАЭС RU C-RU.НА65.В.01524/22 выданный ООО «ТехБезопасность» со сроком действия по 27.07.2027г).

- 1.4.5.6 Номинальная статическая функция преобразования описана в Приложении Е.
 - 1.5 Обеспечение взрывобезопасности.
- 1.5.1 Взрывобезопасность газоанализаторов обеспечивается видом взрывозащиты: «взрывонепроницаемая оболочка «d» по ГОСТ IEC 60079-1-2013 и выполнением их конструкций (см. Приложение Б) в соответствии с общими требованиями ГОСТ 31610.0-2019 следующими способами:
- за счёт заключения электрических частей во взрывонепроницаемую оболочку по ГОСТ ІЕС 60079-1-2013, которая выдерживает давление взрыва внутри и исключает передачу воспламенения в окружающую взрывоопасную среду, взрывонепроницаемость оболочки обеспечивается щелевой взрывозащитой. Параметры взрывонепроницаемых соединений соответствуют ГОСТ IEC 60079-1-2013 и указаны в *Приложении Б*. На чертеже средств взрывозащиты взрывонепроницаемые соединения обозначены словом «Взрыв»;
- не превышением максимальной температуры наружной поверхности оболочки газоанализаторов температурного класса Т4 (130 °C) по ГОСТ 31610.0-2019. В газоанализаторах необходимо устанавливать кабель с рабочей температурой согласно режиму эксплуатации;
- взрывозащитные поверхности имеют шероховатость Ra<3,2 мкм и покрыты защитным слоем смазки ЦИАТИМ-221 ГОСТ 9433-2021;
- выполнением металлических частей газоанализаторов с высокой механической прочностью по ГОСТ 31610.0-2019, которые выдерживают энергию удара не менее 7 Дж;

- смотровое окно LED-индикатора предназначено для низкой степени опасности механических повреждений (2 Дж), следует оберегать от механических повреждений и ударов;
- крепление наружных частей газоанализаторов выполнено специальными крепёжными деталями М5 из нержавеющей стали. Класс свойств крепёжных деталей А2-50 с минимальным пределом прочности 500 МПа. Резьба специальных крепёжных деталей выполнена с крупным шагом и полем допуска 6 g/6H;
- крепёжные детали, а также контактные токоведущие и заземляющие зажимы предохранены от самоотвинчивания пружинными шайбами;
 - наружные заземляющие зажимы M6 выполнены по ГОСТ 21130;
- для обеспечения степени защиты от внешних воздействий IP66/67
 по ГОСТ 14254 установлены уплотнительные кольца;
 - применением сертифицированных Ех кабельных вводов;
- не превышением допустимой температуры печатных проводников и малых элементов для класса Т4 (135°C) по ГОСТ 31610.0-2019;
- обеспечением допустимых зазоров и путей утечки печатных проводников;
 - не превышением допустимой потребляемой мощности;
- обеспечением требуемых коэффициентов нагрузки по напряжению,
 току и мощности для элементов, влияющих на вид взрывозащиты;
- наличием маркировки взрывозащиты в соответствии с п. 1.6
 настоящего РЭ;
- наличием предупредительной надписи: «Открывать, отключив от сети» на торце вводного отсека.

Знак «Х», стоящий после маркировки взрывозащиты, означает, что при эксплуатации газоанализаторов должны выполняться специальные условия применения (см. п 2.1.6 настоящего РЭ).

- 1.5.2 Обеспечение сохранения технических характеристик оборудования, обуславливающих его взрывобезопасность достигается:
 - не превышением напряжения питания более 32 B;
- не превышением нагрузочных характеристик контактов реле 3 A при 30 B и 120 В постоянного и переменного напряжения соответственно.
 - 1.6 Маркировка и пломбирование
- 1.6.1 Маркировка газоанализаторов выполнена по требованиям ТР ТС 012/2011, ГОСТ 31610.0-2019, ГОСТ IEC 60079-1-2013, ГОСТ Р 52350.29.1-2010.
 - 1.6.2 Места маркировки:
 - накладная табличка на корпусе ПГ;
 - на индивидуальной потребительской транспортной таре.
 - 1.6.3 Содержание маркировки на накладной табличке:
 - наименование или логотип предприятия-изготовителя;
 - знак утверждения типа средства измерения

- условное обозначение газоанализатора;
- год изготовления;
- степень защиты от внешних воздействий;
- знак обращения на рынке:

EHC;

- заводской номер;
- диапазон температур окружающей среды;
- наименование или знак органа по сертификации и номер сертификата соответствия;
 - маркировка взрывозащиты:

1Ex db IIC T4 Gb X;

- специальный знак взрывобезопасности: Ех;
- напряжение питания номинальное (допустимое): U=24B(18-32)B;
- максимальная потребляемая мощность: Pmax=4,5 Вт;

- предупредительная надпись: «ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ»;
- наименование определяемого компонента;
- WWW адрес изготовителя.
- 1.6.4 Клеммные контакты имеют обозначение электрических выводов для внешних подключений.
- 1.6.5 Содержание маркировки на индивидуальной потребительской транспортной таре:
 - наименование или логотип предприятия-изготовителя;
 - наименование изделия*;
 - дата проведения упаковывания*;
- манипуляционные знаки и знаки условий транспортировки «Хрупкое. Осторожно», «Беречь от влаги» по ГОСТ 14192.
- 1.6.6 Способ нанесения маркировки на накладной табличке технология «Алюмофото», прямая печать на алюминиевой пластине, лазерная гравировка на стальной пластине или альтернативный способ.
- 1.6.7 Способ нанесения маркировки на индивидуальную потребительскую транспортную тару типографская печать на картоне.
- 1.6.8 Газоанализаторы пломбируется с помощью мастики с фирменным оттиском, а для опции с LED индикатором устанавливается этикетка контроля вскрытия, защищающая от доступа к оптико-электронному узлу, электронный узел опечатан пломбой с фирменным оттиском.

^{*} Может быть указано в упаковочном листе.

- 1.7 Упаковка
- 1.7.1 Газоанализаторы упакованы в ящики картонные в количестве одного комплекта газоанализатора и одного комплекта сопроводительной документации в одной единице транспортной тары (упаковке).
- 1.7.2 Внутренняя упаковка, необходимая для защиты и фиксации газоанализаторов в картонной таре при транспортировке, перегрузке, хранении и продаже, выполнена по технологиям Instapak, Sealed Air, или аналогичной.
- 1.7.3 По согласованию с Заказчиком отправка газоанализаторов может производиться в облегчённой упаковке.
- 1.7.4 Сопроводительная документация вложена в герметичный пакет из полиэтиленовой плёнки. Допускается помещать сопроводительную документацию во внутреннюю упаковку без дополнительной упаковки.
- 1.7.5 Упаковка защищена от несанкционированного вскрытия с помощью клейкой ленты на полипропиленовой основе (скотч упаковочный) с логотипом предприятия изготовителя.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Эксплуатационные ограничения
- 2.1.1 Запрещается эксплуатация газоанализаторов при несоблюдении рабочих условий, указанных в *таблице* 1.
- 2.1.2 На месте установки газоанализаторов необходимо наличие заземляющего контура.
- 2.1.3 Подводящие электрические кабели должны быть защищены от растягивающих и скручивающих нагрузок.
- 2.1.4 Корпуса газоанализаторов защищены от атмосферных воздействий и удобны для наружной установки. Возможно использование без дополнительных брызгозащитных кожухов для защиты оптических элементов от воды и пыли.
- 2.1.5 Для обеспечения правильной работы газоанализаторов полное сопротивление сигнального контура 4÷20 мА не должно превышать 500 Ом.
- 2.1.6 *Специальные условия* применения, обозначенные знаком «Х» после маркировки взрывозащиты, включают в себя следующие требования:
- монтаж и эксплуатацию газоанализаторов должны осуществлять лица, знающие правила эксплуатации электроустановок во взрывоопасных зонах, изучившие руководство по эксплуатации газоанализатора, аттестованные и допущенные приказом администрации к работе с газоанализаторами;
- кабеля температура В месте ввода при максимальной эксплуатационной температуре окружающей среды может превышать плюс 100 °C, поэтому необходимо применять взрывозащищённые кабельные вводы с видом взрывозащиты «взрывонепроницаемая оболочка «d» подгруппы IIC и степенью защиты от внешних воздействий не ниже IP66/67, имеющие сертификат TP TC действующий соответствия 012/2011, выбор подключаемого кабеля производить исходя из соответствия допустимой температуры эксплуатации;

- прокладка кабелей во взрывоопасных зонах должна осуществляться в соответствии с «Правилами устройства электроустановок»;
- при эксплуатации газоанализаторы следует оберегать от механических повреждений и ударов;
- запрещается пользоваться газоанализаторами с повреждёнными корпусами;
- монтаж и подключение газоанализаторов должны производиться при отключённом напряжении электропитания.
 - 2.2 Подготовка газоанализаторов к использованию
 - 2.2.1 Меры безопасности при подготовке газоанализаторов.
- 2.2.1.1 К работам по монтажу, техническому обслуживанию и эксплуатации допускаются лица, достигшие 18-ти летнего возраста, прошедшие медицинское освидетельствование, производственное обучение на слесаря монтажника КИПиА, инструктаж по технике безопасности.
- 2.2.1.2 В процессе подготовки газоанализаторов к использованию и при эксплуатации, техническом обслуживании и ремонте необходимо соблюдать требования следующих документов:
 - Правила устройства электроустановок (ПУЭ. изд. 7, гл. 7.3);
- Правила по охране труда при эксплуатации электроустановок
 утверждённые приказом Минтруда России от 29.04.2022 №279н;
 - настоящее РЭ;
- эксплуатационная документация на технические средства,
 совместно с которыми применяется газоанализаторы.
 - 2.2.2 Объем и последовательность внешнего осмотра газоанализаторов:
 - проверить целостность упаковки;
 - проверить комплектность согласно паспорту $\Pi \square AP.413311.001.1\Pi C$;
- проверить отсутствие повреждений корпуса, Ex-кабельного ввода, заземляющих устройств;
 - проверить наличие средств уплотнения Ех-кабельного ввода;

проверить маркировку взрывозащиты и предупредительные надписи.

ВНИМАНИЕ

МЕХАНИЧЕСКИЕ ПОВРЕЖДЕНИЯ ВЗРЫВОЗАЩИТНЫХ ПОВЕРХНОСТЕЙ НЕ ДОПУСКАЮТСЯ.

- 2.2.3 Правила и порядок осмотра рабочих мест.
- 2.2.3.1 Изделия устанавливаются на стенах и ограждающих конструкциях зданий, опорах навесов, а также на потолочные перекрытия контролируемых помещений. Газоанализаторы устанавливаются параллельно горизонту, (см. рис. 3, 4). При такой установке оптические элементы менее подвержены загрязнению, обледенению и т.д., а измерительная схема работает корректно, при этом, для контроля газовоздушных смесей легче воздуха, газоанализаторы монтируются под потолком, для контроля тяжёлых углеводородов на расстоянии не выше 1 м от пола.
- 2.2.3.2 На базе серийно изготавливаемых газоанализаторов ОГС-ПГП/М могут собираться исполнения для монтажа в трубопровод или вентиляционный канал (см. табл.6).

Монтажные чертежи комплектующих деталей приведены в *Приложении И* настоящего РЭ.

Таблица 6

Исполнение	Назначение	Примечание
ПДАР.413311.001.1/В1	Вентиляция	Монтажная пластина 312*222 мм
ПДАР.413311.001.1/В2	Вентиляция	Монтажная пластина 322*252 мм
ПДАР.413311.001.1/Ф1	Трубопровод	Фланец Ø195 мм (для крепления на фланец 1-80-2,5 ГОСТ 12820-80)
ПДАР.413311.001.1/Ф2	Трубопровод	Фланец Ø170 мм
ПДАР.413311.001.1/Ф3	Трубопровод	Фланец Ø215 мм

- 2.2.3.3 Выбор места установки газоанализаторов является важным фактором, определяющим характеристики и эффективность газоанализатора в целом. Необходимо продумать каждую деталь установки, особенно:
- местные и государственные нормативы и требования,
 регулирующие установку газоизмерительных систем;
- соответствующие нормативы, регулирующие прокладку и подключение электрических силовых и сигнальных кабелей к газоизмерительным системам;
- полный диапазон условий окружающей среды, в которых будет работать газоанализатор;
 - физические характеристики измеряемых газов;
- удобство доступа к оборудованию, что важно при техническом обслуживании;
- типы опционального и вспомогательного оборудования, которое будет использоваться в системе.
 - 2.3 Использование газоанализаторов
- 2.3.1 Порядок действия обслуживающего персонала при выполнении задач применения газоанализаторов:
- 2.3.1.1 Газоанализаторы рассчитаны на круглосуточную и непрерывную работу, поэтому после включения и опробования работы по п. 2.3.2 настоящего РЭ, дополнительные действия обслуживающего персонала не требуются.
- 2.3.1.2 Конфигурирование газоанализаторов, в том числе первоначальная калибровка, установка уровней порогов сигнализации производится предприятием изготовителем на основании данных, указанных в опросном листе Заказчика, с прошивкой файла конфигурации во флэшпамять микроконтроллера.

- 2.3.2 Порядок контроля работоспособности газоанализаторов:
- 2.3.2.1 проверить отсутствие определяемого компонента в окружающей атмосфере;
 - 2.3.2.2 подать питание на газоанализатор напряжением 24 В;
- 2.3.2.3 проконтролировать наличие выходных сигналов на подключённом к изделию оборудовании верхнего уровня, или, для изделия с LED индикатором, проконтролировать включение LED-индикатора зелёного цвета в мигающем режиме (инициализация) и переход на постоянное свечение (режим HOPMA);
- 2.3.2.4 снять питание с газоанализаторов, проконтролировать отсутствие выходных сигналов на подключённом к изделию оборудовании, и выдачу извещения о неисправности на верхний уровень, или, для изделия с LED индикатором, отсутствие свечения LED индикатора зелёного цвета.
 - 2.3.3 Возможные неисправности и способы их устранения.
- 2.3.3.1 Перечень неисправностей и способы их устранения приведены в *таблице* 7.

ВНИМАНИЕ

ПРИ ОБНАРУЖЕНИИ НЕИСПРАВНОСТИ ИЗДЕЛИЯ — ОТКЛЮЧИТЬ НАПРЯЖЕНИЕ ПИТАНИЯ

- 2.3.3.2 При достижении предельного состояния газоанализаторы должны быть сняты с эксплуатации. К параметрам предельного состояния относятся:
 - истечение назначенного срока службы 15 лет;
 - истечение назначенного срока хранения 12 месяцев;
 - повреждение корпуса изделия, сенсора или Ех-кабельных вводов;
 - отказ изделия.
 - 2.3.3.3 Критериями отказов изделий являются:
- неустранимый выход допускаемой основной погрешности за пределы, установленной *таблицей 2* настоящего РЭ;

самопроизвольное формирование тревожных сообщений на выходных интерфейсах при отсутствии факта превышения порогов концентрации.

Таблица 7

Описание неисправности	Возможная причина	Способ устранения
Отсутствуют выходные сигналы»,	Отсутствует	Проверить правильность
Отсутствует свечение LED индикатора	напряжение	монтажа кабельных линий.
зелёного цвета «НОРМА» или имеется	питания в	Проверить напряжения на
свечение белого цвета	установленном	клеммах внутри
	диапазоне	газоанализатора
Свечение LED индикатора красного	Сбой	Произвести установку нуля
цвета «ЗАГАЗОВАННОСТЬ»,	концентрационной	с помощью магнитного
некорректные показания при отсутствии	калибровки	ключа или тестовой
загазованности или превышение		программы, произвести
погрешности измерения		калибровку
Свечение LED индикатора жёлтого цвета	Запылённость	Очистить окно, зеркало,
«НЕИСПРАВНОСТЬ»	оптических	установить ноль с помощью
На аналоговом выходе ток 1÷2 мА,	элементов	магнитного ключа или
сработало реле «НЕИСПРАВНОСТЬ».		тестовой программы
TT.		

Примечания:

- 1. При возникновении прочих более сложных неисправностей их устранение может проводиться только на предприятии-изготовителе.
- 2. При отказах изделия отсутствуют последствия, которые могут причинить вред жизни или здоровью человека, имуществу, окружающей среде.

2.3.4 Порядок выключения газоанализаторов.

Газоанализаторы выключается путём снятия питающего напряжения, состояние контролируют отсутствием выходных сигналов на подключённых к изделиям оборудовании верхнего уровня, или отсутствием свечения LED индикатора зелёного цвета.

2.3.5 Меры безопасности при использовании газоанализаторов в соответствии с п. 2.2.1 настоящего РЭ.

ВНИМАНИЕ

МОНТАЖ ГАЗОАНАЛИЗАТОРОВ ОСУЩЕСТВЛЯТЬ В СООТВЕТСТВИИ С П. 2.4 НАСТОЯЩЕГО РЭ

МЕСТА УСТАНОВКИ ГАЗОАНАЛИЗАТОРОВ, ТИПЫ И КОЛИЧЕСТВО ВНЕШНИХ УСТРОЙСТВ ОПРЕДЕЛЯЮТСЯ ПРОЕКТНОЙ ДОКУМЕНТАЦИЕЙ НА ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ ОБЪЕКТА.

- 2.4 Порядок монтажа и демонтажа
- 2.4.1 Подготовка газоанализаторов к монтажу.
- 2.4.1.1 При отрицательных температурах окружающего воздуха и внесения газоанализаторов в помещение с положительной температурой следует, во избежание конденсации влаги, выдержать газоанализаторы в упаковке в течение не менее 4 часов.
- 2.4.1.2 Вскрыть упаковку, провести внешний осмотр газоанализаторов, проверить комплектность поставки согласно паспорту на газоанализаторы, при этом следует обратить внимание на:
- отсутствие повреждений корпуса ПГ, HART-порта (опционально) и Ех-кабельных вводов;
- наличие средств уплотнения Ех-кабельных вводов и отсутствие их повреждений;
- наличие всех крепёжных элементов (болтов, гаек, шайб) в соответствии с проектом;
 - отсутствие повреждений заземляющих устройств.
- 2.4.1.3 Ознакомиться с проектной документацией, убедиться в правильности выбора места монтажа газоанализаторов.
 - 2.4.2 Обеспечение взрывобезопасности при монтаже:
 - изучить настоящее РЭ;
- проверить наличие маркировки взрывозащиты газоанализаторов, Ех-кабельных вводов и её соответствие безопасному использованию газоанализаторов в намеченной зоне и в ожидаемых условиях работы;
- проверить целостность корпусов взрывозащищённых устройств, в т.ч. Ех- кабельного ввода, наличие заземляющих устройств.

ЗАПРЕЩАЕТСЯ

МОНТАЖ ГАЗОАНАЛИЗАТОРА С МЕХАНИЧЕСКИМИ ПОВРЕЖДЕНИЯМИ И НЕИСПРАВНОСТЯМИ ВЗРЫВОЗАЩИЩЁННЫХ УСТРОЙСТВ

- 2.4.3 Монтаж газоанализаторов.
- 2.4.3.1 Определить место установки в соответствии с п. 2.2.3.1 настоящего РЭ.
- 2.4.3.2 Разметить место крепления, просверлить 4 отверстия диаметром 8 мм под дюбели в углах квадрата размером 60 мм, установить газоанализатор на четыре шурупа из состава монтажного комплекта.
- 2.4.3.3 К месту установки подвести проводники и кабели необходимой длины. Подключение газоанализаторов, находящихся во взрывоопасной зоне, с внешними устройствами, установленными во взрывобезопасной зоне, рекомендуется выполнять кабелем в соответствии с ГОСТ 31610.0-2019, ГОСТ IEC 60079-14-2014.
- 2.4.3.4 Открутить 3 винта крепления в торце основания/вводного отсека и отсоединить его от корпуса $\Pi\Gamma$.
- 2.4.3.5 Выполнить установку Ех-кабельных вводов и монтаж кабеля в соответствии с пошаговой инструкцией производителя кабельных вводов (см. *Приложение* Д для варианта Ех-кабельного ввода E3XBF/NP/20s/M20 PEPPERS¹).

ВНИМАНИЕ

- МОНТАЖ ДОЛЖЕН ВЫПОЛНЯТЬ ТОЛЬКО КВАЛИФИЦИРОВАННЫЙ ЭЛЕКТРИК, ИМЕЮЩИЙ ОПЫТ В УСТАНОВКЕ КАБЕЛЬНЫХ ВВОДОВ.
 - НЕЛЬЗЯ ВЫПОЛНЯТЬ МОНТАЖ ПОД НАПРЯЖЕНИЕМ.
- ПОСЛЕ ВЫПОЛНЕНИЯ МОНТАЖА НЕ ДЕМОНТИРУЙТЕ ВВОД, ЗА ИСКЛЮЧЕНИЕМ СЛУЧАЕВ СПЕЦИАЛЬНОГО ОСМОТРА. ВВОД НЕ ПОДЛЕЖИТ ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ.
- 2.4.3.6 Произвести монтаж кабелей на винтовой части клеммных разъёмов в соответствии с *рисунком* 6 и выбранной схемой коммутации приведёнными в *Приложении А*, при этом для использования схемы активной токовой петли, необходимо установить перемычку на джампере **X11**, а для схемы пассивной токовой петли необходимо установить перемычку на джампере **X12**.

¹ При монтаже и демонтаже Ех-кабельного ввода необходимо руководствоваться прилагаемой к нему Инструкцией по сборке и монтажу.

2.4.3.7 При поставке газоанализаторов с HART-портом, монтаж в т.ч. подключение согласующего резистора с помощью джампера **X9**, производится на предприятии-изготовителе.

ВНИМАНИЕ

НЕ ПОДКЛЮЧАЙТЕ К КОНТАКТАМ РЕЛЕ НАГРУЗКУ С ПИКОВОЙ МОЩНОСТЬЮ, ПРЕВЫШАЮЩЕЙ ПАРАМЕТРЫ ГАЗОАНАЛИЗАТОРА.

ВНИМАНИЕ

В ГАЗОАНАЛИЗАТОРАХ РЕАЛИЗОВАН АКТИВНЫЙ ТОКОВЫЙ ВЫХОД: НЕ ДОПУСКАЕТСЯ ПОДКЛЮЧЕНИЕ КАБЕЛЕЙ ПИТАНИЯ НА СИГНАЛЬНЫЕ КЛЕММЫ.

Рисунок 6 - Схема электрическая монтажная

- 2.4.3.8 Произвести заземление с помощью внутреннего зажима.
- 2.4.3.9 Проверить наличие уплотнительного кольца с внутренней стороны основания/вводного отсека.
 - 2.4.3.10 Прикрутить основание/вводный отсек, затянуть винты.
- 2.4.3.11 Смонтированные газоанализаторы осмотреть на предмет отсутствия повреждений, правильности и качества электрических соединений, надёжности контактов, наличия заземления, сопротивление которого должно быть не более 4 Ом.

- 2.4.3.12 Возобновить на всех поверхностях, отмеченные на чертеже словом «ВЗРЫВ» (*см. Приложение Б*) антикоррозийную смазку ЦИАТИМ-221 ГОСТ 9433-2021 или аналогичную.
- 2.4.3.13 При использовании в изделии только одного Ех-кабельного ввода, надёжно заглушить второе вводное отверстие с помощью Ех-заглушки, поставляемой с изделием.

ЗАПРЕЩАЕТСЯ

ЭКСПЛУАТАЦИЯ ГАЗОАНАЛИЗАТОРОВ ПРИ ОБРЫВЕ ИЛИ ОТСУТСТВИИ ЦЕПИ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ

- 2.4.4 Указания по включению и опробованию работы газоанализаторов.
- 2.4.4.1 По окончанию монтажа всей системы проверить работоспособность газоанализаторов с совместными техническими средствами в соответствии с Руководством по эксплуатации на них и п. 2.3.2 настоящего РЭ.

ВНИМАНИЕ

ВО ВРЕМЯ ТЕСТИРОВАНИЯ ИЛИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ, ВЗАИМОДЕЙСТВУЮЩИЕ ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМЫ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ ДОЛЖНЫ БЫТЬ ОТКЛЮЧЕНЫ ВО ИЗБЕЖАНИЕ НЕЖЕЛАТЕЛЬНОЙ АКТИВАЦИИ.

- 2.4.5 Демонтаж газоанализаторов.
- 2.4.5.1 Отключить газоанализаторы от источника электропитания.
- 2.4.5.2 Открутить четыре крепёжных винта, соединяющие кронштейн газоанализаторы с несущей поверхностью.
- 2.4.5.3 Открутить 3 три винта и отделить основание/вводный отсек, отсоединить провода и кабели от клеммной платы.
- 2.4.5.4 Ослабить нажимную гайку и уплотнители Ех-кабельного ввода, вынуть кабель из вводного отсека ПГ.
- 2.4.5.5 Заизолировать оголённые концы кабеля, например, с помощью термоусадочных уплотнений.
- 2.4.5.6 Прикрутить основание/вводный отсек к корпусу ПГ с помощью 3-х винтов, уложить в тару газоанализаторы и кронштейн.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 Общие указания
- 3.1.1 Техническое обслуживание (ТО) газоанализаторов проводится с целью обеспечения нормальной работы и сохранения его эксплуатационных и технических характеристик в течение всего срока эксплуатации.
- 3.1.2 Работы по ТО не должны ставить под угрозу безопасность в контролируемой зоне.
- 3.1.3 Персонал, осуществляющий ТО и проверки во взрывоопасных зонах, должен располагать документацией, отвечающей требованиям действующих нормативных документов, по следующим вопросам:
 - классификация взрывоопасных зон;
 - маркировка взрывозащиты установленного оборудования;
- данные, достаточные для обеспечения возможности технического обслуживания взрывозащищённого электрооборудования: расположение газоанализаторов на плане взрывоопасных зон; линейные схемы электрических соединений, РЭ, паспорта взрывозащищённого электрооборудования, копии сертификатов, свидетельств и разрешений органов государственного надзора.
- 3.1.4 Техническое обслуживание должен выполнять только квалифицированный персонал, подготовка которого включает практическое обучение работе с электрооборудованием, имеющим взрывозащиту различных видов, и способам его монтажа, изучение требований стандарта ГОСТ 52350.29.2, соответствующих технических норм и правил, указанных в п. 2.2.1.2. Этот персонал должен проходить регулярную переподготовку и иметь соответствующие свидетельства.
- 3.1.5 Организацию и контроль за проведением работ по техническому обслуживанию осуществляет инженерно-технический персонал, эксплуатирующей организации.

3.2 Меры безопасности

Работы по ТО на работающем изделии проводятся с соблюдением мер безопасности, указанных в 2.2.1 настоящего РЭ.

- 3.3 Порядок технического обслуживания
- 3.3.1 Техническое обслуживание газоанализаторов сводится к периодическому внешнему осмотру, установке «нуля» и калибровке.
- 3.3.2 Периодичность осмотров устанавливает потребитель в зависимости от условий эксплуатации и внутренних правил. Рекомендуемые сроки проведения осмотров:
 - внешний осмотр один раз в шесть месяцев;
 - профилактический осмотр один раз в пять лет
- 3.3.3 Система ТО предусматривает проведение следующих видов проверок:
- 3.3.3.1 Первичная проверка, в т.ч. калибровка, проводится перед вводом газоанализаторов в эксплуатацию;
 - 3.3.3.2 Периодические проверки:
 - внешний осмотр;
 - проверка прочности крепления составных частей;
 - проверка работоспособности газоанализаторов;
 - проведение калибровки;
- 3.3.4 Необходимо вести учёт всех осмотров, проверок работоспособности, поверок и других работ, проводимых с газоанализаторами.
 - 3.3.5 При проведении работ по ТО следует учесть:
 - очистка окон сенсоров может проводиться по мере необходимости,
 при получении сообщения «Неисправность», или видимого запыления
 поверхности газоанализаторов;
 - очистка корпуса проводится путём удаления пыли щеткой-сметкой или слегка влажной бязью;

- после выполнения работ по TO проводят проверку работоспособности газоанализаторов согласно п. 2.3.2 настоящего РЭ.
- 3.3.6 Установка «нуля» проводится с помощью магнитного ключа следующим образом:
 - 3.3.6.1 При отсутствии загазованности в рабочей зоне:
- подать питание на газоанализаторы напряжением 24 B, выдержать газоанализаторы не менее 1 ч;
- зафиксировать и удерживать магнит в течение не менее 5 с на корпусе газоанализаторов в точке «**X**».
 - 3.3.6.2 При загазованности в рабочей зоне:
- подготовить баллон с ПНГ (азот или чистый воздух),
 калибровочную камеру, трубки, при необходимости ротаметр и магнитный ключ;
 - установить калибровочную камеру;
- подать питание на газоанализаторы напряжением 24 B, выдержать газоанализаторы не менее 1 ч;
- заполнить калибровочную камеру ПНГ (азот или сухой воздух из баллона) на время не менее 60 с;
- установить магнитный ключ на указанной точке « \mathbf{X} » на корпусе и удерживать в течение не менее 5 с.
- 3.3.7 Установка «нуля» и концентрационная калибровка изделия с LED-индикатором проводятся с помощью магнитного ключа в режиме «СЕРВИС» следующим образом:
 - установить калибровочную камеру, входящую в комплект поставки;
 - подать питание на газоанализатор напряжением 24 В постоянного тока;

- проконтролировать включение LED индикатора зелёного цвета
 в мигающем режиме (инициализация) и переход на постоянное свечение
 (режим HOPMA);
- произвести касание магнитом на корпусе ПГ в точке «**X**», проконтролировать включение LED индикатора синего цвета в мигающем режиме (режим «СЕРВИС»), при наличии фоновой загазованности, подать ПНГ;
- произвести второе касание магнитом на корпусе ПГ в точке
 «Х», при этом выполнится установка «нуля», после чего LED индикатор
 будет светится попеременно синим и красным цветом;
- заполнить калибровочную камеру ПГС из баллона (*no умолчанию* 50% *НКПР*) 1 на время не менее 60 с;
- произвести третье касание магнитом на корпусе ПГ в точке «**X**», проконтролировать включение LED индикатора синего цвета в постоянном режиме, при этом выполнится концентрационная калибровка;
- снять калибровочную камеру с ПГС, после обнуления концентрации газоанализатор автоматически выйдет из режима «СЕРВИС» в режим «НОРМА».
- 3.3.8 Установка параметров Modbus адреса и скорости обмена в значения «по умолчанию», в случае некорректной записи, проводится с помощью магнитного ключа в режиме «СЕРВИС» следующим образом:
 - подать питание на газоанализатор напряжением 24 В постоянного тока;

_

¹ При наличии у потребителя ПГС с другим процентным содержанием НКПР необходимо ввести это значение в память микропроцессора (см. п. Ж.4.7 Руководства пользователя, Приложение Ж).

- проконтролировать включение LED индикатора зелёного цвета в мигающем режиме (инициализация) и переход на постоянное свечение (режим HOPMA);
- произвести касание магнитом на корпусе ПГ в точке «**X**», проконтролировать включение LED индикатора синего цвета в мигающем режиме (режим «СЕРВИС»);
- удерживая магнитный ключ на точке «Х» в течение 3-5 с, снять и вновь подать питание на газоанализатор;
- убрать магнитный ключ, проконтролировать включение LED индикатора зелёного цвета в мигающем режиме (инициализация) и переход на постоянное свечение (режим HOPMA);

После выполнения этой процедуры прибор определяется с параметрами: Modbus адрес – 3 и скорость обмена – 9600 бод.

- 3.4 Техническое освидетельствование
- 3.4.1 Газоанализаторы подвергаются первичной и периодическим поверкам в соответствии с утверждённой Методикой поверки.
- 3.4.2 Поверку проводят аккредитованные метрологические службы юридических лиц, или специально обученные специалисты, аттестованные в качестве поверителей органами Государственной метрологической службы.
- 3.4.3 Результаты поверки газоанализаторов, признанных годными к применению, оформляют выдачей свидетельства о поверке, или соответствующей записью в паспортах ПДАР.413311.001.1ПС в разделе «Сведения о поверке».
 - 3.5 Консервация
- 3.5.1 Газоанализаторы в целом и его составные части изготовлены из коррозионностойких сплавов (алюминиевый сплав, нержавеющая сталь), и не требуют временной противокоррозионной защиты самого изделия и его поверхности.
- 3.5.2 Транспортирование и хранение газоанализаторов производится без средств временной противокоррозионной защиты (вариант защиты ВЗ-0).

4 ТЕКУЩИЙ РЕМОНТ

- 4.1 Общие указания
- 4.1.1 Гарантийный и послегарантийный ремонт газоанализаторов, в том числе устройств взрывозащиты, производится изготовителем или лицами, уполномоченными изготовителем для проведения ремонтных работ.
- 4.1.2 До вывода газоанализаторов в ремонт эксплуатационная организация должна провести следующие мероприятия:
 - составить предварительную ведомость дефектов и перечень планируемых модернизаций.
 - провести совместно с предприятием-изготовителем измерения параметров и обследование газоанализаторов на рабочем режиме под нагрузкой (при технической возможности) для получения данных, необходимых для анализа работы и технического состояния отдельных элементов оборудования.
 - представить предприятию-изготовителю рекламацию, акт о необходимости ремонта и заполненный паспорт.
- 4.1.3 Началом ремонта газоанализаторов считается время их сдачи в ремонт по акту. После вскрытия газоанализаторов ремонтным персоналом производится уточнение ведомости дефектов и сроков ремонта.
- 4.1.4 HART-порт ввиду конструктивных особенностей не ремонтнопригоден.
 - 4.2 Меры безопасности
- 4.2.1 Вывод газоанализаторов в ремонт должен производиться эксплуатационным персоналом с разрешения диспетчерской службы и должен быть оформлен предварительно оперативной заявкой.
- 4.2.2 Если отсутствует точно такой же газоанализатор для замены отправленного в ремонт, то в качестве временной замены необходимо использовать передвижной газоанализатор.

5 ХРАНЕНИЕ

- 5.1 Условия хранения
- 5.1.1 в части воздействия механических факторов для изделий группы механического исполнения M4 по ГОСТ 30631;
- 5.1.2 в части воздействия климатических факторов -3 (Ж3) по ГОСТ 15150, на срок сохраняемости до ввода в эксплуатацию в упаковке, выполненной изготовителем -12 месяцев.
- 5.2 Газоанализаторы должны храниться в складских помещениях, защищающих прибор от воздействия атмосферных осадков, в упаковках, на стеллажах, в штабелях не более 5 слоёв, расстояние между стенами, полом помещения и газоанализаторами должно быть не менее 100 мм, расстояние между отопительными устройствами хранилища и газоанализаторами должно быть не менее 0,5 м, при отсутствии в воздухе пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, разрушающих покрытие.

6 ТРАНСПОРТИРОВАНИЕ

- 6.1 Условия транспортирования
- 6.1.1 в части воздействия механических факторов С по ГОСТ 51908;
- 6.1.2 в части воздействия климатических факторов такие же, как условия хранения 5 по ГОСТ 15150.
- 6.2 Если требуемые условия транспортирования и (или) хранения и сроков сохраняемости отличаются от указанных выше, то газоанализаторы поставляют для условий и сроков, устанавливаемых в договорах на поставки.
- 6.3 Транспортировать газоанализаторы следует упакованными в пакеты, контейнеры или штучно.
- 6.4 Транспортирование газоанализаторов допускается любым видом закрытого транспорта, кроме неотапливаемых и негерметизированных отсеков самолётов, упакованным в тару, в соответствии с установленными для каждого вида транспорта правилами.
- 6.5 Сроки транспортирования входят в срок сохраняемости до ввода в эксплуатацию, при этом сроки транспортирования и промежуточного хранения при перегрузках не должны превышать 3 мес.
 - 6.6 Транспортные характеристики газоанализаторов:
 - масса, кг, не более4,5/6,5;
 - габаритные размеры (ШхГхВ), мм, не более 250х180х300.

Приложение А (обязательное)

Схемы подключения газоанализаторов ОГС-ПГП/М

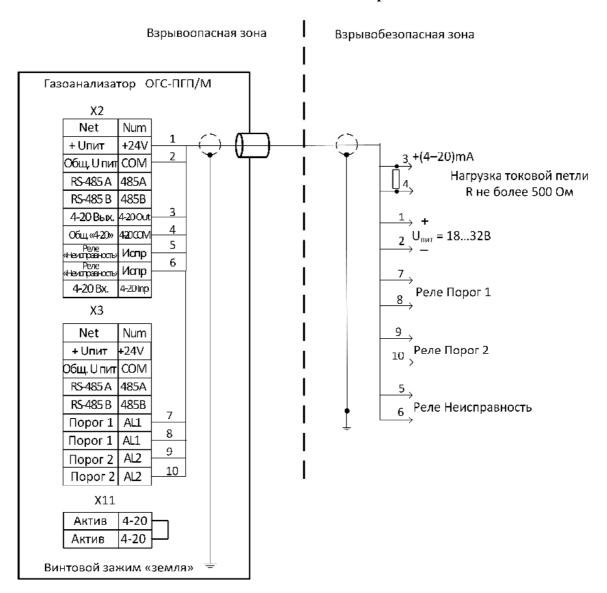


Рисунок А.1 — Схема электрическая подключения газоанализатора с использованием активной токовой петли/сигнальных реле типа «сухой» контакт (перемычка установлена на джампере X11)

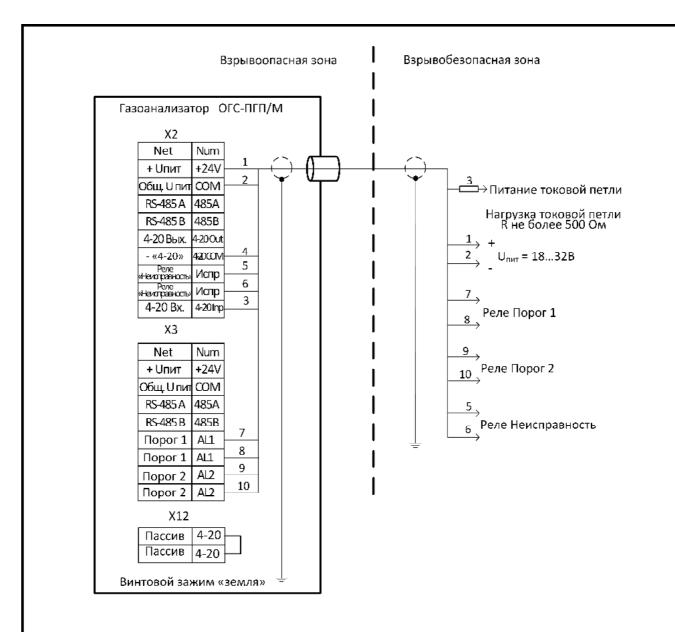
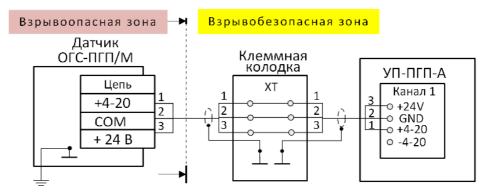
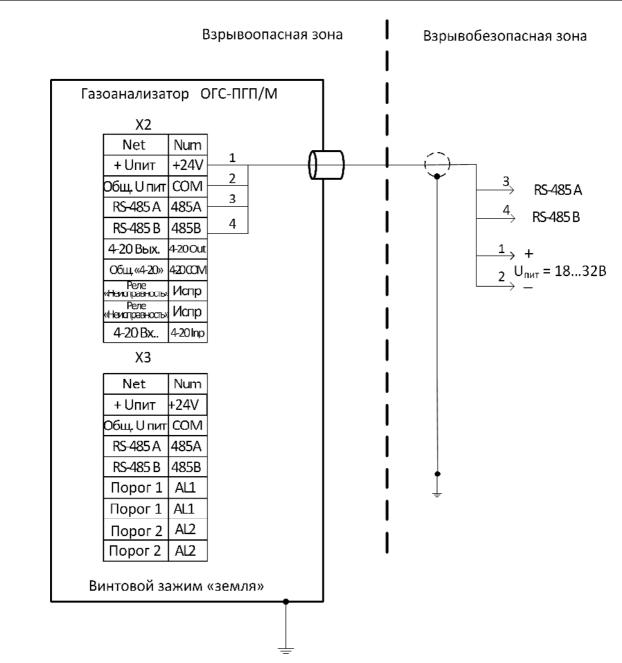



Рисунок А.2 – Схема электрическая подключения газоанализатора с использованием пассивной токовой петли/сигнальных реле типа «сухой» контакт (перемычка установлена на джампере X12).



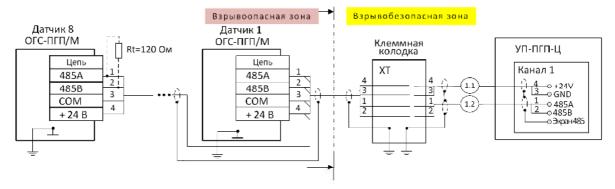

- 1 Соединение датчиков с клеммной колодкой выполнить сигнальным кабелем, сечением соответствующим длине линии. Рекомендуется, для удобства монтажа и технического обслуживания, соединения датчиков с клеммной колодкой выполнить через промежуточные Ex-распределительные коробки, при удалении их от датчиков не более 1 м.
- 2 Соединение УП-ПГП-А с клеммной колодкой выполнить кабелем типа КВВГЭ4, сечение которого выбирают в зависимости от расстояния между УП-ПГП-А и клеммной колодкой.

Рисунок А.3 — Схема электрическая 3-х проводная подключения газоанализатора с использованием токовой петли к устройству пороговому УП-ПГП-А, или аналогичному модулю ввода промышленного контроллера

Одноименные контакты разъёмов X2 и X3 соединены на клеммной плате

Рисунок А.4 – Схема электрическая подключения газоанализатора по RS-485

1. Для подключения цифровых шлейфов датчиков к клеммной колодке рекомендуется применять кабели для промышленного интерфейса RS-485 (витая пара экранированная). Экран кабеля RS-485 заземляется со стороны УП-ПГП-Ц, в конце шлейфа экран изолировать.

- 2. Рекомендуется, для удобства монтажа и технического обслуживания, соединения датчиков с клеммной колодкой XT выполнить через промежуточные Ex-распределительные коробки, при удалении их от датчиков не более $1 \, \mathrm{m}$.
- 3. Соединение датчиков с УП-ПГП-Ц выполнить проводом, например ПСВ2х1,5 ГОСТ 7399-97.
- 4. Обеспечить согласование «открытого» конца кабеля RS-485 (на крайнем датчике) с остальной линией путем включения терминального резистора номиналом 120 Ом, для этого джампер X5 на клеммной плате переводят в положение «ON», или установить внешний резистор 120 Ом между A и B.

Рисунок А.5 – Схема электрическая подключения газоанализаторов по RS-485 к устройству пороговому УП-ПГП-Ц, или аналогичному модулю ввода промышленного контроллера

Приложение Б (справочное)

Чертёж средств взрывозащиты

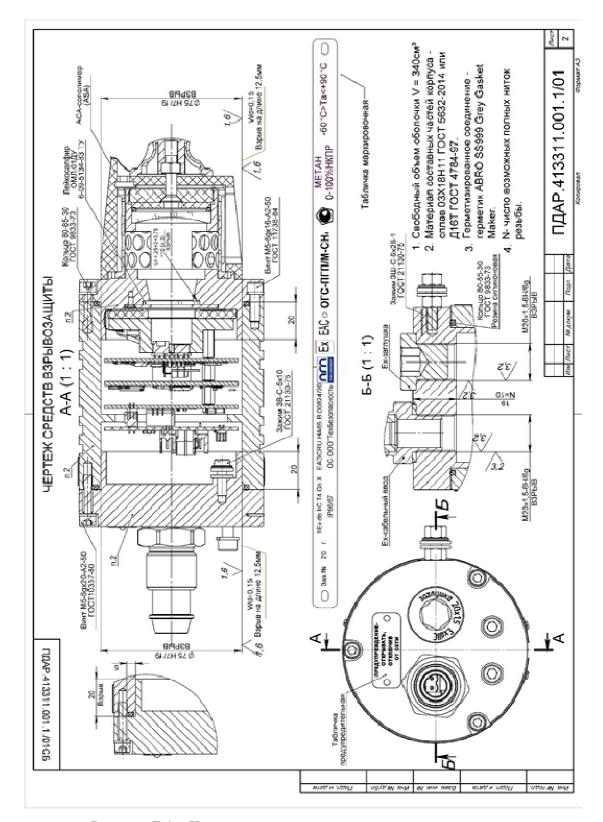


Рисунок Б.1 – Чертёж средств взрывозащиты газоанализатора

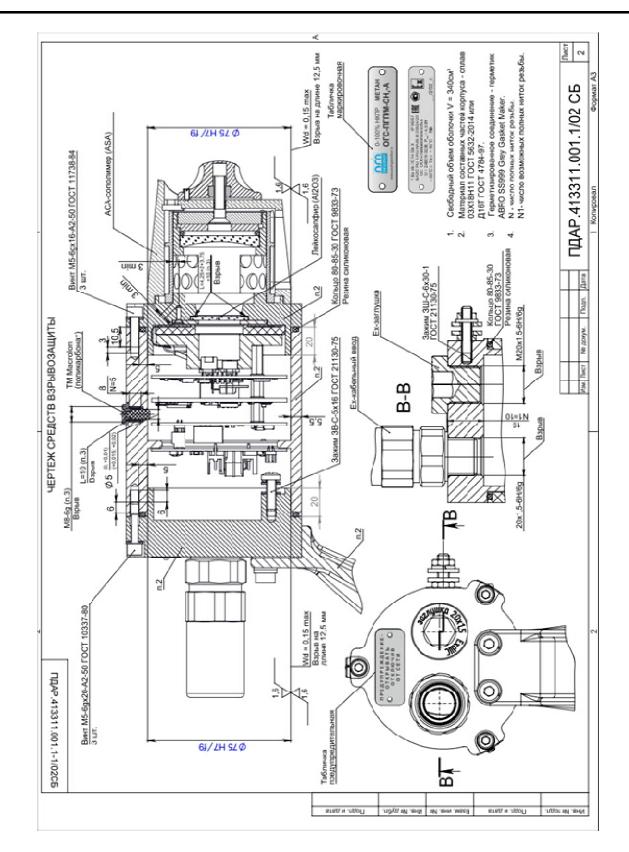


Рисунок Б.2 – Чертёж средств взрывозащиты газоанализатора с LED-индикатором

Приложение В (справочное)

Протокол обмена RS-485

Карта адресов чтения/записи Modbus для газоанализатора ОГС/М

Функции чтения – 0x03, 0x04.

 Φ ункции записи – 0х06.

Доступ "R" – чтение (0х03, 0х04).

Доступ "W" – запись (0x06).

Адреса регистров – физические.

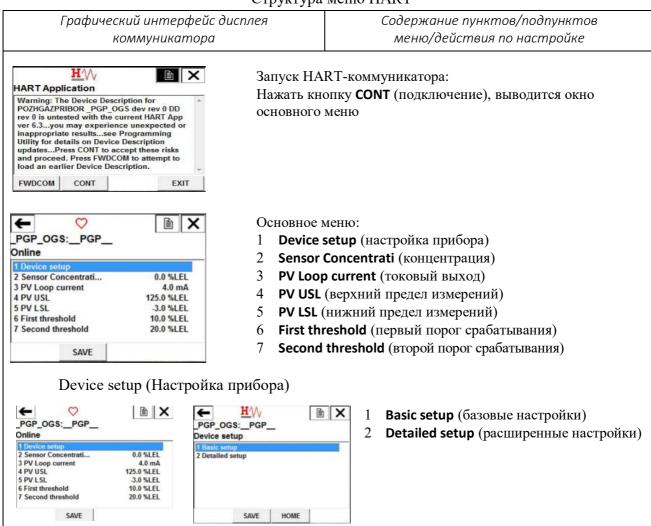
Коды ошибок: 0х01 – ошибка функции, 0х02 – ошибка адресации регистров.

Наименование	Адрес	Доступ	Тип данных	Назначение			
Основная область							
ADRB_BAUDRATE	0x01	R/W	Unsigned16	Ст. байт – сетевой адрес Мл. байт – скорость обмена 1200 бит/сек – 1 2400 бит/сек – 2 4800 бит/сек – 4 9600 бит/сек – 8 19200 бит/сек – 16			
ADRB_NGAS	0x02	R	Unsigned16	Ст. байт – тип газа GAS_METHANE 1 // - метан, GAS_PROPANE 2 // - пропан, GAS_HEXANE 3 // - гексан, GAS_BUTANE 4 // - бутан, GAS_ISOBUTANE 5 // - изобутан, GAS_PENTAN 6 // - пентан, GAS_CYCLOPENTAN 7 // - циклопентан, GAS_ETHANOL 8 // - этанол GAS_METHYL 11 // - метанол Мл. байт — состояние бит 0 — 1 — исправность, 0 — неисправность бит 1 — 1 — превышен порог 1, 0 — норма бит 2 — 1 — превышен порог 2, 0 — норма			
ADRB_NKPR	0x03	R	Signed16	Концентрация в %НКПР			

Наименование	Адрес	Доступ	Тип данных	Назначение
ADRB_POROGI	0x04	R	Unsigned16	Ст. байт – первый порог, в %НКПР Мл. байт – второй порог, в %НКПР
ADRB_D	0x05	R	Signed16	D приведённое
ADRB_R	0x06	R	Signed16	Опорный канал, фильтр.
ADRB_W	0x07	R	Signed16	Рабочий канал, фильтр.
ADRB_DI	0x08	R	Signed16	D приборное
ADRB_TK	0x09	R	Signed16	Температура приборная Т
ADRB_SERNUM	0x0A	R	Unsigned16	Заводской номер
ADRB_NKPR10	0x0B	R	Signed16	Концентрация в %НКПР, умноженная на 10
ADRB_FWVER	0x0C	R	Unsigned16	Ст. байт – версия ПО Мл. байт. – подверсия ПО
ADRB_DEVTYPE	0x0D	R	Unsigned16	Ст. Байт – Тип прибора Мл. байт. – модификация
ADRB_CONC	0x0E	R	Signed16	Концентрация в об.д., умноженная на 1000
ADRB_URI	0x0F	R	Signed16	Опорный канал, исходное.
ADRB_UWI	0x10	R	Signed16	Рабочий канал, исходное.

Приложение Г (справочное)

Протокол HART

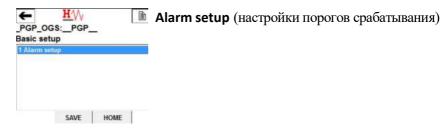

В газоанализаторах для вывода информации посредством протокола HART используется аналоговый выход 4-20 мА и встроенный модем сигналов стандарта Bell 202 через HART разъемX1.

Интерфейс: Bell 202 Current (1200, 8-Odd-1).

Протокол: HART 7.

Подробное описание HART меню, актуальную версию DD файлов (описание HART устройства) и пароли доступа можно получить по запросу у производителя по адресу электронной почты <u>info@pozhgazpribor.ru</u>.

Структура меню HART



Графический интерфейс дисплея коммуникатора

Содержание пунктов/подпунктов меню/действия по настройке

Basic setup (Базовые настройки)

Alarm setup (Настройки порогов срабатывания)

- 1 **First threshold** (Первый порог):
- 2 **Second threshold** (Второй порог):
- 3 Editing the first threshold (Редактирование первого порога: ввод нового значения)
- 4 Editing the second threshold (Редактирование второго порога: ввод нового значения)

First threshold (Первый порог)

Первый порог текущее значение

Second threshold (Второй порог)

Второй порог текущее значение

Editing the first threshold (Редактирование первого порога)

- 1 Выбрать в списке Alarm setup пункт Editing the first threshold
- 2 Нажать «ОК»
- 3 Нажать «ОК»
- 4 Ввести нужное значение, нажать «ENTER»
- 5 Выбрать «NO», если дальнейшая корректировка не требуется, нажать «ENTER»
- 6 Нажать «ОК» для подтверждения ввода

Графический интерфейс дисплея коммуникатора

Содержание пунктов/подпунктов меню/действия по настройке

Editing the second threshold (Редактирование второго порога)

- **1.** Выбрать в списке Alarm setup пункт Editing the second threshold
- 2. Далее редактирование второго порога аналогично (см. выше)

Detailed setup (Расширенные настройки основного меню)

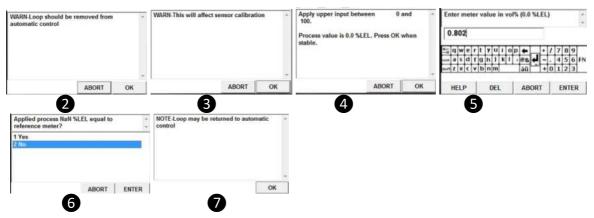
- 1 Output condition (токовый выход) не применяется
- 2 Device information (Информация о приборе)
- 3 Sensors trim (Настройка сенсора)

Device information (Информация о приборе)

Sensors trim (Настройка сенсора)

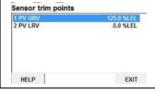
- 1 Sensor Concentration (Текущее значение концентрации)
- 2 **Zero trim** (Установка нуля)
- 3 Device variable trim (Калибровка прибора)
- 4 Sensor trim points (Информация о диапазоне измерений)

Zero trim (Установка нуля)



Графический интерфейс дисплея коммуникатора

Содержание пунктов/подпунктов меню/действия по настройке


- 1 Выбрать в списке Sensors trim пункт Zero trim
- 2 Нажать «ОК», появляется предупреждение, что данные действия скажутся на калибровке сенсора
- 3 Нажать «ОК», появляется предупреждение, что «0» запишется в прибор
- 4 Нажать «ОК» для подтверждения установки нуля
- 5 Сообщение об установки нуля
- 6 Нажать «ОК», для дальнейшей работы с прибором

Device variable trim (Калибровка прибора)

- 1 Выбрать в списке Sensors trim пункт Device variable trim
- 2 Нажать «ОК», появляется предупреждение, что данные действия скажутся на калибровке сенсора
- 3 Нажать «ОК»
- 4 Появляется сообщение о необходимости ввода нового значения в диапазоне от 0 до 100 и показано текущее значение концентрации, нажать «ОК»
- 5 Открывается окно ввода значений. Ввести значение концентрации из паспорта на ПГС, нажать «ENTER»
- 6 Выбрать «NO», если дальнейшая корректировка не требуется, нажать «ENTER»
- 7 Нажать «ОК» для подтверждения калибровки

Sensor trim points (Информация о диапазоне измерений)

- 1 Выбрать в списке Sensors trim пункт Sensor trim points
- 2 Для просмотра верхнего и нижнего пределов измерений выбрать соответствующий пункт

Приложение Д (справочное)

Инструкция по монтажу Ex-кабельного ввода E3XBF/NP/20s/M20

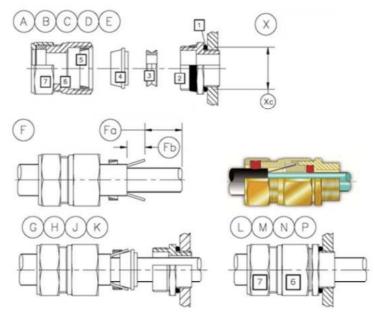


Рисунок Г.1 – Сборочный чертёж Ех - кабельного ввода

- **А** Разъедините ввод, как показано на рисунке. Уплотнение [3] удаляется, чтобы уменьшить повреждение кабеля.
- **В** Проверьте [5]: ДЛЯ КОМПЛЕКТОВ E1L/D1L/E9L ETC: Для проволочного армирования используйте ПЛОСКОЕ зажимное кольцо. Для плетёного армирования из стальной проволоки или ленточного армирования используйте РИФЛЕНОЕ зажимное кольцо В ПАКЕТЕ.
- **С** Уплотнительное кольцо [1] поставляется только по специальному заказу. При необходимости установите уплотнительную шайбу.
- **D** Закрепите [2]. Правильное значение усилия затяжки 32,5 Hm. НЕ ПРЕВЫШАЙТЕ МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ УСИЛИЯ ЗАТЯЖКИ ДЛЯ РЕЗЬБЫ ОБОЛОЧКИ.
- **E** Наденьте на кабель детали [5], [6] и [7], как показано на *рисунке*.
- **F** Подготовьте кабель, как показано на *рисунке*.
- **Fa** Снимите внешнюю оболочку кабеля и армирование на длину, достаточную для монтажа.
- **Fb** Оставьте армирование длиной приблизительно 20 мм.
- **G** Наденьте [4] на внутреннюю оболочку и под армирование. Надвиньте [5] на открытое армирование.
- **Н** Вставьте кабель через [2]. Надвиньте [3] на открытую часть армирования. НЕ УСТАНАВЛИВАЙТЕ [3].
- **J** При необходимости на всех стадиях используйте второй гаечный ключ на [2], чтобы избежать срыва резьбы.
- **К** Подтяните [6] к [2]. Правильное значение усилия затяжки 32,5 Hm.
- **L** Ослабьте [6], чтобы визуально убедиться, что армирование закреплено надёжно.
- М УСТАНОВИТЕ УПЛОТНЕНИЕ [3]. Вставьте кабель через [2] и [3].
- **N** Снова затяните [6] с необходимым усилием.
- **Р** Вручную затяните [7], чтобы прижать уплотнение к кабелю. НЕ ПРИЛАГАЙТЕ БОЛЬШОЕ УСИЛИЕ.

Приложение Е (справочное)

Номинальная статическая функция преобразования

Для вывода информации по токовой петле номинальная статическая функция преобразования представлена зависимостью силы электрического тока выходного сигнала от концентрации определяемого компонента:

$$I_{HOM} = 16 \cdot \frac{C_i}{C_{max}} + 4 \tag{E.1}$$

где

 I_{HOM} — выходной ток, мА

 C_i – измеренная концентрация, % об.

 C_{max} — максимальное значение объемной доли определяемого компонента, соответствующее выходному току 20 мА

Расчет измеренной концентрации проводится по формуле:

$$C = \frac{\left|I_j - I_0\right|}{\kappa};\tag{E.2}$$

где:

 I_{j} – выходной ток газоанализатора в точке проверки (мА);

 I_0 – начальный выходной ток газоанализатора 4 мА

 κ – коэффициент преобразования:

$$\kappa = \frac{16mA}{C_{max} - C_{min}}; \tag{E.3}$$

где:

 C_{max} — максимальная концентрация диапазона измерения (таблица 2 РЭ);

 $C_{min} = 0$ — минимальная концентрация диапазона измерения (таблица 2 РЭ).

Приложение Ж (обязательное)

Программа сервисная *OGS_M Test* **РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ**

ж.1 О ПРОГРАММЕ

Ж.1.1 *OGS_M Test* – это программный компонент (утилита), позволяющий изменять значения параметров газоанализаторов ОГС-ПГП/М ранее установленные, и устанавливать те значения, которые устраивают пользователя.

Ж.1.2 *OGS M Test* предоставляет пользователю выполнение следующих задач:

- установка *modbus*-адреса устройства;
- установка скорости обмена по RS-485;
- установка скорости обмена по RS-485 и *modbus-*адреса устройства в значения «по умолчанию»;
 - установка порогов включения тревожной сигнализации;
 - установка «нуля»;
 - проведение концентрационной калибровки;
 - просмотр архива.
 - Ж.1.3 Требования к конфигурации аппаратных средств.

Надёжная эксплуатация обеспечивается следующей минимальной конфигурацией компьютера:

- процессор *Intel Pentium 4* с тактовой частотой 1.6 ГГц;
- объём основной (оперативной) памяти 256 Mб;
- свободное пространство на жёстком магнитном диске 10 Мб;
- оборудование ввода и вывода:
 - устройство чтения-записи данных с оптических носителей информации (CD, DVD);
 - монитор с разрешением не менее 1024x768 пикселей;
 - клавиатура, манипулятор типа «мышь».
- переходник «RS-485 RS-232».
- Ж.1.4 Требования к программному обеспечению.

Для функционирования программы **OGS_M Test** необходима операционная система (OC) семейства Microsoft® WindowsTM /XP/7 с установкой NET Framework 4.5.0 (не меньше).

Ж.2 УСТАНОВКА И ОБНОВЛЕНИЕ ПРОГРАММЫ

Ж.2.1 *OGS_M Test* поставляется на CD диске в виде единого установочного файла *OGS_M Test.exe*. Первая установка программы осуществляется пользователем путём копирования установочного файла в выбранный каталог. Для установки программы запустите на выполнение файл *OGS_M Test.exe*.

Ж.3 ЗАПУСК ПРОГРАММЫ И ДОСТУП К ИНТЕРФЕЙСУ

 \mathcal{K} .3.1 Запуск *OGS_M Test* осуществляется вручную пользователем. После запуска программа будет представлена основным окном графического интерфейса (*puc.* \mathcal{K} .1) на рабочем столе монитора ПК.

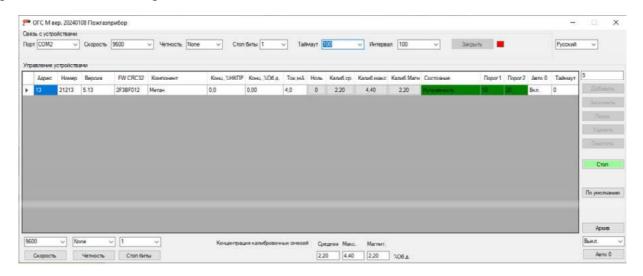


Рисунок Ж.1 – Основное окно интерфейса программы *OGS M Test*

Ж.3.2 Основное окно содержит следующие элементы интерфейса:

- Строка заголовка (*puc. Ж.2*) располагается в верхней части основного окна в виде традиционных для ОС Windows заголовка окна и кнопок управления окном **«свернуть/развернуть/закрыть».**

Рисунок Ж.2 – Строка заголовка программы

– Панель «Связь с устройством» (*puc. Ж.3*) располагается в верхней части основного окна в виде набора выпадающих списков, в том числе, для установки/выбора номера и скорости обмена СОМ – порта и кнопки управления «**Открыть/Закрыть»** СОМ – порт»

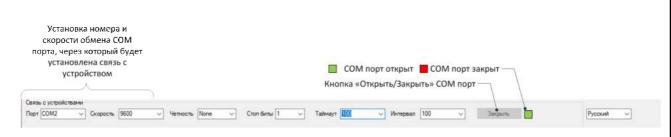


Рисунок Ж.3 – Панель «Связь с устройством»

– Рабочее поле «Управление устройствами» (*puc. Ж.4*) в виде таблицы с надписями параметров устройств и их окнами значений, с возможностью выделения в поле выбора устройства с которым предполагаются действия по изменению значений параметров.

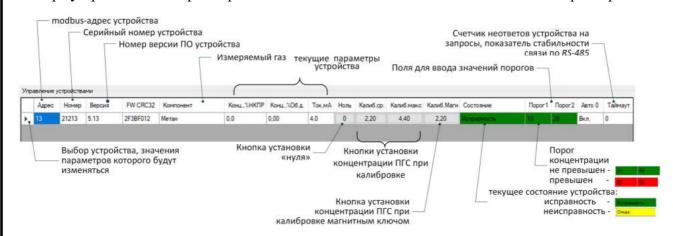


Рисунок Ж.4 – Рабочее поле «Управление устройствами»

– Панель инструментов для работы с устройствами (*puc. Ж.5*) расположена в правой части основного окна в виде вертикального поля с кнопками управления:

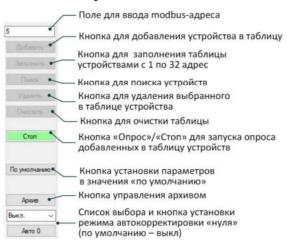


Рисунок Ж.5 – Панель инструментов для работы с устройствами

– Панель инструментов для работы с устройством (*puc. Ж.6*), выбранным в таблице (*см. рис. Ж.4*) располагается в нижней левой части основного окна в виде набора элементов: выпадающего списка для установки/выбора скорости обмена СОМ – порта, полей ввода значений концентраций ПГС при калибровке.

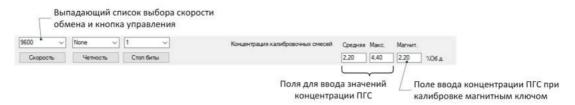
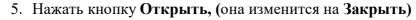
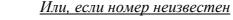



Рисунок Ж.6 – Панель инструментов для работы с выбранным в таблице устройством


РАБОТА С ПРОГРАММОЙ Ж.4

Ж.4.1 Установка связи с устройством по интерфейсу RS-485.

- 1. Подключить устройство к персональному компьютеру (ПК) через переходник RS-485 – RS-232.
- 2. Подать напряжение питания на устройство.
- 3. Запустить программу **OGS M Test.**
- 4. Выбрать на панели «Связь с устройством» (см. n. \mathcal{K} .3) из выпадающих списков:
 - Порт (активный порт определяется автоматически);
 - Скорость обмена с портом;

6. Ввести в поле ввода (см. рис $\mathcal{K}.5$) номер modbus-адреса подключаемого прибора (например, «5»), нажать кнопку Добавить,

- 7. Нажать кнопку Поиск, дождаться окончания поиска (≈30 с), если будут найдены какие-либо приборы, они будут автоматически добавлены в таблицу.
- 8. Нажать кнопку Опрос, после чего программа в циклическом режиме, один за другим, будет опрашивать все добавленные в таблицу приборы.
- 9. Кнопки Заполнить и Очистить предназначены для работы с шлейфом устройств с номерами с 1 по 32.

Ж.4.2 Установка новых значений *Modbus*-адреса-и скорости обмена устройства

- 1. Выполнить процедуры подраздела Ж. 4. 1.
- 2. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).
- 3. Ввести в поле ввода **Адрес** (см. рис. Ж.4) новый modbus-адрес прибора, для подтверждения нажать клавишу Enter.
- 4. Выбрать из выпадающего списка (см. рис. Ж.б) требуемое новое значение скорости обмена (например, 19200), нажать кнопку Скорость. Устройству будет назначена новая скорость и его не будет видно в таблице (см. рис. Ж.4), т.к. ранее устройство с такой скоростью не опрашивался.

Связь с устройствами

Порт СОМ13

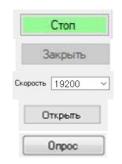
Скорость 9600

5

COM6

Открыть

Добавить


Поиск

Опрос

Заполнить

Очистить

- 5. Для поиска устройства, нажать кнопку **Стоп** (*см. рис. Ж.5*) (она изменится на **Опрос**), остановить опрос устройств.
- 6. Нажать кнопку Закрыть, (она изменится на Открыть), (см. рис. Ж.З.).
- 7. Выбрать на панели «Связь с устройством» (см. рис. Ж.3) из выпадающего списка Скорость обмена с портом, например, 19200;
- 8. Нажать кнопку Открыть, (она изменится на Закрыть).
- 9. Нажать кнопку **Опрос** (*см. рис.* \mathcal{K} .5), устройство появится в таблице.

Ж.4.3 Установка «нуля»

- 1. Выполнить процедуры подраздела Ж.4.1 (при необходимости).
- 2. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).
- 3. После приработки в течение не менее 30 мин, подать ПНГ (азот, чистый воздух) с потоком 0.5 л/мин.
- 4. После стабилизации показаний нажать кнопку Ноль (см. рис. Ж.4)
- 5. При наличии шлейфа устройств повторить процедуры №№ 2, 3, 4 (без приработки) текущего подраздела для других устройств.

Ж.4.4 Установка значений порогов тревожной сигнализации

- 1. Выполнить процедуры подраздела Ж. 4.1 (при необходимости).
- 2. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).
- 3. Щёлкнуть мышью в поле текущего значения (см. рис. Ж.4) **Порог 1** и ввести новое значение тревожной сигнализации в % НКПР, для подтверждения нажать клавишу **Enter**
- 4. Щёлкнуть мышью в поле текущего значения (*см. рис. Ж.4*) **Порог 2** и ввести новое значение тревожной сигнализации в % НКПР, для подтверждения нажать клавишу **Enter**.
- 5. При наличии шлейфа устройств повторить процедуры с № 2 по №4 текущего подраздела для других устройств.

Ж.4.5 Установка значений параметров «по умолчанию»

- 1. Выполнить процедуры подраздела Ж. 4.3 (при необходимости).
- 2. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).
- 3. Нажать кнопку (*см. рис. Ж.5*) **По умолчанию**. Параметры будут установлены в значения «по умолчанию»: значение *Modbus*-адреса 3; скорость обмена устройства 9600 бод.

- /		<i>J</i> 1	,	1
Чётно	сть (Parity)	Стоп.	Функция	Используемые адреса
		Бит	чтения	
Без ко	нтроля	1	0x03, 0x04	Статус 0х02 (мл. байт)
(none))			(нумерация с 1)
				Концентрация 0х03
				(нумерация с 1)

4. При наличии шлейфа устройств повторить процедуры №№ 2, 3 текущего подраздела для других устройств.

Ноль

Ж.4.6 Выполнение концентрационной калибровки

- 1. Выполнить процедуры подраздела Ж. 4.3.
- 2. Подать ПГС с концентрацией близкой к 100% диапазона измерений. После стабилизации показаний, окна полей **Порог 1** и **Порог 2** (для всех добавленных в таблицу и подключённых к шлейфу устройств) будут подсвечены красным цветом.*)
- 3. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).

4. Ввести в поле ввода **Макс** (см. рис. Ж.6) значения концентраций ПГС в % об.д., указанные в паспортах на ПГС (например, **4.40**).

- 5. Нажать кнопку **Калиб. Макс** *(см. рис. Ж.4)*.
- 6. При наличии шлейфа устройств повторить процедуры №№ 3 5 текущего подраздела для других устройств.
- 7. Снять калибровочные камеры с устройств, выждать стабилизации нулевых показаний, повторно установить калибровочные камеры.
- 8. Подать ПГС с концентрацией, близкой к 50 % диапазона измерений. После стабилизации показаний, окна поля **Порог 1** (для всех добавленных в таблицу и подключённых к шлейфу устройств) будут подсвечены красным цветом, окна поля **Порог 2** зелёным цветом.
- 9. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).

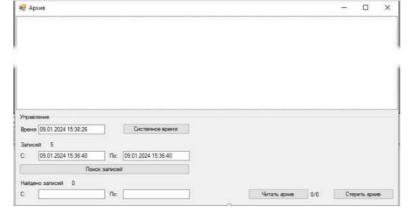
10. Ввести в поле ввода **Средняя** (*см. рис.* \mathcal{K} .6) значение концентрации подаваемого ПГС в % об.д., (например, **2.20**).

- 11. Нажать кнопу **Калиб. Ср** *(см. рис. Ж.4)*.
- 12. При наличии шлейфа устройств повторить процедуры №№ 9-11. текущего подраздела для других устройств.
- 13. Снять калибровочные камеры с устройств, выждать стабилизации нулевых показаний.
- *) Газоанализаторы калибруются по 2-м точкам после установки нуля («Калибр.Макс.», «Калибр.Ср.»). Выбор газовых смесей осуществляется согласно актуальной Методики поверки, где («Калибр.Макс.» соответствует ПГС №3, «Калибр.Ср.» соответствует ПГС №2.

Ж.4.7 Выполнение концентрационной калибровки с помощью магнитного ключа

- 1. При отсутствии у потребителя ПГС с 50% НКПР (установленного по умолчанию) выполнить процедуры №№ 1-3 подраздела Ж.4.1.
- 2. Выбрать в таблице устройство, с которым будете работать (см. рис. Ж.4).

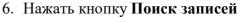
3. Ввести в поле ввода **Магнит** *(см. рис. Ж.6)* значение концентрации ПГС в % об.д., указанное в паспорте на ПГС, (например, 2.20).

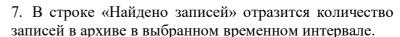


- 4. Нажать кнопку **Калиб. Магн.** для установки концентрации ПГС *(см. рис. Ж.4)*.
- 5. Далее выполнить процедуры в соответствии с п. 3.3.7 настоящего РЭ.
- 6. При наличии шлейфа устройств повторить процедуры №№ 2-5 текущего подраздела для других устройств.

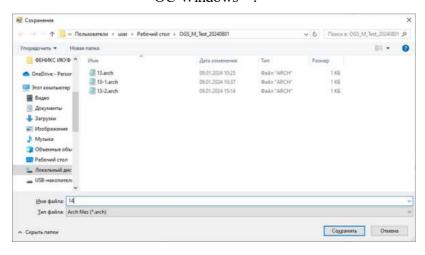
Ж.4.8 Просмотр архива

- 1. Выполнить процедуры подраздела Ж.4.1 (при необходимости).
- 2. Выбрать в таблице устройство, архив которого необходимо просмотреть (см. рис. Ж.4).
- 3. Нажать кнопку Архив (см. рис. Ж.5).


Стереть архив

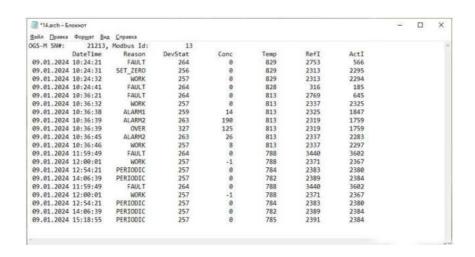

No: 09.01.2024 15:18:55

0/0


4. Откроется окно формирования «Архив».

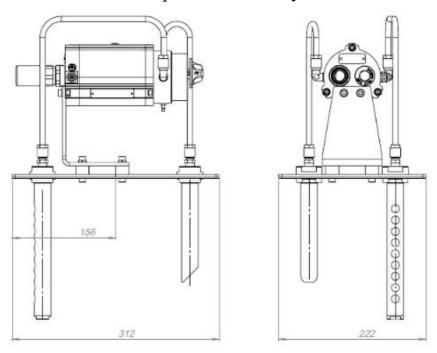
5. Выбрать на панели «Управление» временной интервал записей архива «С ... По ...) выбранного устройства.

8. Нажать кнопку, **Читать архив**, откроется окно «Сохранение», в нем прописать путь для формирования и сохранения текстового файла стандартными средствами ОС Windows $^{\text{TM}}$.



но записей 5

09.01.2024 11:59:49


Читать архив

9. Открыть «Блокнот» ОС Windows, найти и открыть ранее сохранённый файл архива для просмотра.

Ж.4.9 **Завершить работу программы** можно стандартными средствами ОС с помощью кнопок управления окном

Приложение И (справочное) Монтажные чертежи комплектующих деталей

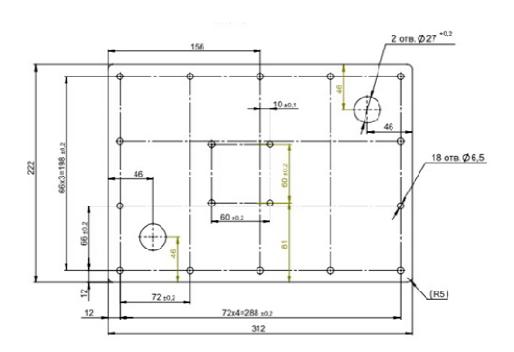


Рисунок И.1 – Газоанализатор ОГС-ПГП/М монтажный чертёж ПДАР.413311.001.1/В1

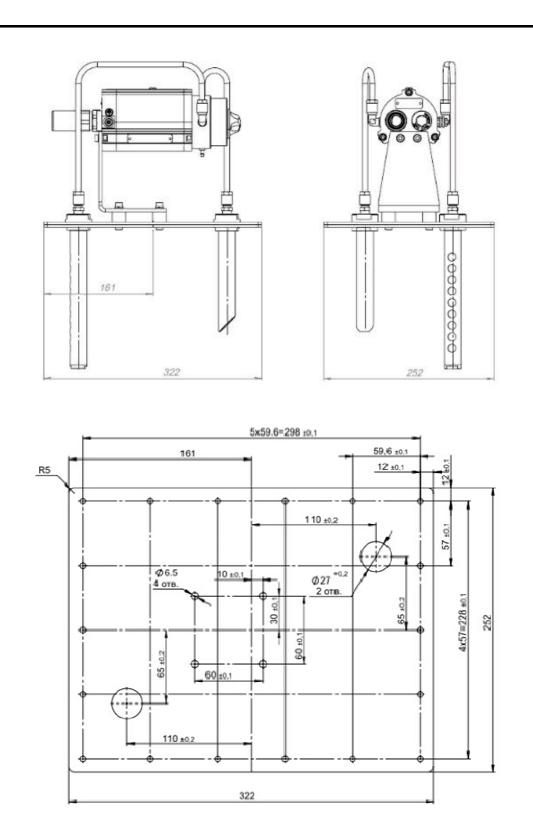
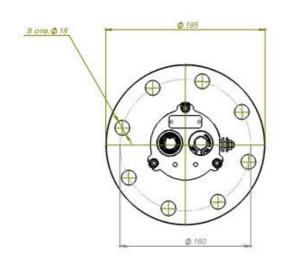



Рисунок И.2 — Газоанализатор ОГС-ПГП/М монтажный чертёж ПДАР.413311.001.1/В2

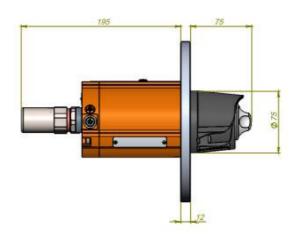
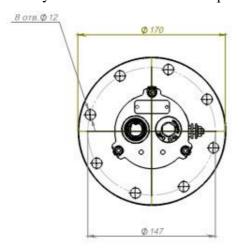



Рисунок И.3 – Газоанализатор ОГС-ПГП/М монтажный чертёж ПДАР.413311.001.1/Ф1

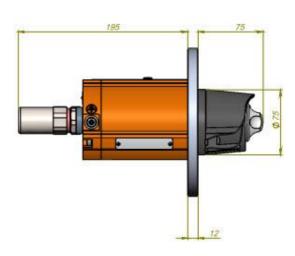


Рисунок И.4 – Газоанализатор ОГС-ПГП/М монтажный чертёж ПДАР.413311.001.1/ Φ 2

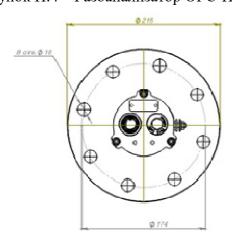


Рисунок И.5– Газоанализатор ОГС-ПГП/М монтажный чертёж ПДАР.413311.001.1/Ф3

Лист регистрации изменений

Изм.	Номера листов (страниц)				Всего листов	ı	Входящий №		
	изменённых	заменённых	новых	аннулиро ванных	(страниц) в документе	№ документа	Входящий № сопроводительно го документа и дата	Подп.	Дата
6		все				ПДАР.01-25			05.03.25